Commit Graph

11 Commits

Author SHA1 Message Date
Shang Chieh Tseng
ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00
Shang Chieh Tseng
736cbdf52a Remove unuse file. 2025-10-22 22:35:41 +08:00
Michael Yang
932bded12f chore: add optional field for server logs 2025-02-05 15:55:32 -08:00
jmorganca
c8afe7168c use correct extension for feature and model request issue templates 2024-04-17 15:18:40 -04:00
jmorganca
28d3cd0148 simpler feature and model request forms 2024-04-17 15:17:08 -04:00
jmorganca
eb5554232a simpler feature and model request forms 2024-04-17 15:14:49 -04:00
jmorganca
2bdc320216 add descriptions to issue templates 2024-04-17 15:08:36 -04:00
jmorganca
32561aed09 simplify github issue templates a bit 2024-04-17 15:07:03 -04:00
Jeffrey Morgan
06a1508bfe Update 90_bug_report.yml 2024-03-29 10:11:17 -04:00
Blake Mizerany
8546dd3d72 .github: fix model and feature request yml (#3155) 2024-03-14 15:26:06 -07:00
Blake Mizerany
87100be5e0 .github: add issue templates (#3143) 2024-03-14 15:19:10 -07:00