This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.
## Key Changes
### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility
### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)
### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)
### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI
### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling
### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts
## Rationale
This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI
We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
The log monitor was using bufio.Scanner which doesn't automatically
follow file growth like 'tail -f'. When scanner reached EOF, it would
stay at EOF even as new lines were written to the log file.
This caused GPU detection to fail because the GPU-related log lines
were written after the scanner reached EOF, so they were never processed.
Solution: Switch to bufio.Reader.ReadString() which properly handles
reading from a growing file by returning io.EOF when no data is available,
allowing us to wait and retry while keeping the file position.
The log monitor was calling Reset() before each model test, which cleared
all GPU detection events that occurred during server startup. This caused
the validation to fail with 'GPU acceleration not detected' even though
GPU was being used successfully.
Root cause: GPU detection logs are written during server startup
(lines like 'offloaded 35/35 layers to GPU'), but monitor.Reset() was
clearing these events before validation could check them.
Solution: Comment out the monitor.Reset() call to preserve GPU detection
events from server startup. These events are still relevant for validating
that the model is using GPU acceleration.
The test-runner was starting the ollama server subprocess without inheriting
environment variables, causing the GGML CUDA backend to fail loading even
though LD_LIBRARY_PATH was set in the GitHub Actions workflow.
Changes:
- Added s.cmd.Env = os.Environ() to inherit all environment variables
- This ensures LD_LIBRARY_PATH is passed to the ollama server subprocess
- Fixes GPU offloading failure where layers were not being loaded to GPU
Root cause analysis from logs:
- GPUs were detected: Tesla K80 with 11.1 GiB available
- Server scheduled 35 layers for GPU offload
- But actual offload was 0/35 layers (all stayed on CPU)
- Runner subprocess couldn't find CUDA libraries without LD_LIBRARY_PATH
This fix ensures the runner subprocess can dynamically load libggml-cuda.so
by inheriting the CUDA library paths from the parent process.
The Claude AI validator was receiving detailed explanations with markdown
formatting (e.g., '**PASS**') instead of the expected simple format.
Updated the validation prompt to explicitly require responses to start
with either 'PASS' or 'FAIL: <reason>' without any additional formatting,
explanations, or markdown before the verdict.
This fixes the 'Warning: Unexpected Claude response format' error that
was causing valid test results to be incorrectly marked as unclear.
- Change temp directory from /tmp/test-runner-claude to .test-runner-temp
- Keeps temporary files within project bounds for Claude Code access
- Add .test-runner-temp to .gitignore to exclude from version control
- Fixes Claude AI validation permission issue
- Function in main.go renamed from validateConfig to validateConfigFile
- Resolves redeclaration error with validateConfig in config.go
- config.go has validateConfig(*Config) for internal validation
- main.go has validateConfigFile(string) for CLI command
- Rename validateConfig flag variable to validateConfigPath
- Resolves compilation error: validateConfig was both a *string variable and function name
- Function call now uses correct variable name
Add comprehensive test orchestration framework:
Test Runner (cmd/test-runner/):
- config.go: YAML configuration loading and validation
- server.go: Ollama server lifecycle management (start/stop/health checks)
- monitor.go: Real-time log monitoring with pattern matching
- test.go: Model testing via Ollama API (pull, chat, validation)
- validate.go: Test result validation (GPU usage, response quality, log analysis)
- report.go: Structured reporting (JSON and Markdown formats)
- main.go: CLI interface with run/validate/list commands
Test Configurations (test/config/):
- models.yaml: Full test suite with quick/full/stress profiles
- quick.yaml: Fast smoke test with gemma2:2b
Updated Workflow:
- tesla-k80-tests.yml: Use test-runner instead of shell scripts
- Run quick tests first, then full tests if passing
- Generate structured JSON reports for pass/fail checking
- Upload test results as artifacts
Features:
- Multi-model testing with configurable profiles
- API-based testing (not CLI commands)
- Real-time log monitoring for GPU events and errors
- Automatic validation of GPU loading and response quality
- Structured JSON and Markdown reports
- Graceful server lifecycle management
- Interrupt handling (Ctrl+C cleanup)
Addresses limitations of shell-based testing by providing:
- Better error handling and reporting
- Programmatic test orchestration
- Reusable test framework
- Clear pass/fail criteria
- Detailed test metrics and timing
* bf16
* tests
* gpt-oss
* enable gptoss for engine
* rough estimate
* convert to mxfp4
* handle safetensors U8
* clamp glu/linear
* update tokenizer
* MXFP4 support
This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.
* Unit tests for MXFP4 support
This exercises various operations and shapes on both CPU and GPU (if detected
on the system)
* cuda graph
* unit test adjustments
* cuda: optimize memory access
Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
* mac: fix crash on old macos versions
cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors. Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.
* server: Minimum context length for gptoss
This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.
* ggml: Multiply by numParallel for gptoss sliding window
When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.
* gpt-oss integration
includes harmony parser and thinking levels, etc.
* fix sync
* fix tests
* fix lint
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
- Both `/api/generate` and `/api/chat` now accept a `"think"`
option that allows specifying whether thinking mode should be on or
not
- Templates get passed this new option so, e.g., qwen3's template can
put `/think` or `/no_think` in the system prompt depending on the
value of the setting
- Models' thinking support is inferred by inspecting model templates.
The prefix and suffix the parser uses to identify thinking support is
also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
existing API consumers. If the `"think"` option is not specified, the
behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
or `--think=false` to control thinking, or during an interactive
session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
it easy to use thinking in scripting scenarios like
`ollama run qwen3 --think --hidethinking "my question here"` where you
just want to see the answer but still want the benefits of thinking
models
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
* increase default context length to 4096
We lower the default numParallel from 4 to 2 and use these "savings" to
double the default context length from 2048 to 4096.
We're memory neutral in cases when we previously would've used
numParallel == 4, but we add the following mitigation to handle some
cases where we would have previously fallen back to 1x2048 due to low
VRAM: we decide between 2048 and 4096 using a runtime check, choosing
2048 if we're on a one GPU system with total VRAM of <= 4 GB. We
purposefully don't check the available VRAM because we don't want the
context window size to change unexpectedly based on the available VRAM.
We plan on making the default even larger, but this is a relatively
low-risk change we can make to quickly double it.
* fix tests
add an explicit context length so they don't get truncated. The code
that converts -1 from being a signal for doing a runtime check isn't
running as part of these tests.
* tweak small gpu message
* clarify context length default
also make it actually show up in `ollama serve --help`
This commit adds retry/backoff to the registry client for pull requests.
Also, revert progress indication to match original client's until we can
"get it right."
Also, make WithTrace wrap existing traces instead of clobbering them.
This allows clients to compose traces.
With support for multimodal models becoming more varied and common it is important for clients to be able to easily see what capabilities a model has. Retuning these from the show endpoint will allow clients to easily see what a model can do.
This fixes the case where a FROM line in previous modelfile points to a
file which may/may not be present in a different ollama instance. We
shouldn't be relying on the filename though and instead just check if
the FROM line was instead a valid model name and point to that instead.
Add metadata and tensor information to the show command to be able to
see more information about a model. This outputs the same data as
shown on the model details page on ollama.com
- output backend system info when initializing the backend. this ensures
this information is always present without needing to be called
explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1