This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.
## Key Changes
### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility
### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)
### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)
### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI
### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling
### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts
## Rationale
This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI
We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.
However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.
This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
The correct constant to remove all entries to the end of the sequence
for the Ollama engine is math.MaxInt32. -1 is used by the old engine.
The impact of this is currently minimal because it would only occur
in situations that are not supported by the implemented models or
rarely used options.
The sliding window cache trims entries that are outside the window for
the latest token. This works when we are extending the cache, such as
when the conversation continues. However, if we have a partial overlap
in conversation (including the BOS tokens), then we resume from a past
point in the conversation and the needed tokens are no longer stored
in memory. This verifies that the new window overlaps with the old one
before reusing the cache.
Co-authored-by: Jesse Gross <jesse@ollama.com>
When truncating inputs to the the context window at the beginning of
a sequence, we remove the minimum amount possible. However, this
may cause us to truncate to the middle of a set of inputs that
the model specified should not be split up. To avoid this, we
need to remove the rest of the partial batch.
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
Currently the runner computes the kv size needed and creates a
cache of that size. This is the context size times number of
parallel sequences.
Cache implementations can make better decisions about their memory
usage, so instead pass in the required capacity, number of sequences
and maximum batch size. For now, the causal cache just uses this to
compute the size in the same way as before.
We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.
Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.
Most of this is simply moving the input data structures to a new
package to avoid import cycles.
Various vision models have different requirements for how they
receive their inputs. For example:
- Mllama wants images together with text and the image embeddings
don't themselves have positions or get stored in the main KV cache
- Llava-style models feed in embeddings similar to tokens and
images correspond to a varying number of tokens in the cache.
In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.
This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.
In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1