import os import json import sys from contextlib import contextmanager from llama_cpp import Llama as LLM import ollama.model @contextmanager def suppress_stderr(): stderr = os.dup(sys.stderr.fileno()) with open(os.devnull, 'w') as devnull: os.dup2(devnull.fileno(), sys.stderr.fileno()) yield os.dup2(stderr, sys.stderr.fileno()) def generate(model, prompt, models_home='.', llms={}, *args, **kwargs): llm = load(model, models_home=models_home, llms=llms) if 'max_tokens' not in kwargs: kwargs.update({'max_tokens': 16384}) if 'stop' not in kwargs: kwargs.update({'stop': ['Q:', '\n']}) if 'stream' not in kwargs: kwargs.update({'stream': True}) for output in llm(prompt, *args, **kwargs): yield json.dumps(output) def load(model, models_home='.', llms={}): llm = llms.get(model, None) if not llm: model_path = { name: path for name, path in ollama.model.models(models_home) }.get(model, None) if model_path is None: raise ValueError('Model not found') # suppress LLM's output with suppress_stderr(): llm = LLM(model_path, verbose=False) llms.update({model: llm}) return llm def unload(model, llms={}): if model in llms: llms.pop(model)