import os import json import sys from contextlib import contextmanager from llama_cpp import Llama as LLM import ollama.model import ollama.prompt @contextmanager def suppress_stderr(): stderr = os.dup(sys.stderr.fileno()) with open(os.devnull, "w") as devnull: os.dup2(devnull.fileno(), sys.stderr.fileno()) yield os.dup2(stderr, sys.stderr.fileno()) def generate(model, prompt, models_home=".", llms={}, *args, **kwargs): llm = load(model, models_home=models_home, llms=llms) prompt = ollama.prompt.template(model, prompt) if "max_tokens" not in kwargs: kwargs.update({"max_tokens": 16384}) if "stop" not in kwargs: kwargs.update({"stop": ["Q:"]}) if "stream" not in kwargs: kwargs.update({"stream": True}) for output in llm(prompt, *args, **kwargs): yield output def load(model, models_home=".", llms={}): llm = llms.get(model, None) if not llm: model_path = { name: path for name, path in ollama.model.models(models_home) }.get(model, None) if not model_path: # try loading this as a path to a model, rather than a model name model_path = os.path.abspath(model) # suppress LLM's output with suppress_stderr(): llm = LLM(model_path, verbose=False) llms.update({model: llm}) return llm def unload(model, llms={}): if model in llms: llms.pop(model)