package llama4 import ( "bytes" "image" "slices" "sync" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Model struct { model.Base model.BytePairEncoding ImageProcessor *VisionModel `gguf:"v,vision"` *Projector `gguf:"mm"` *TextModel } type Projector struct { Linear1 *nn.Linear `gguf:"linear_1"` } func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor { return p.Linear1.Forward(ctx, visionOutputs) } func New(c fs.Config) (model.Model, error) { m := Model{ BytePairEncoding: model.NewBytePairEncoding( c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`), &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Types: c.Ints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")), AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false), // TODO: set EOT to EOS otherwise 0 will stop generation EOT: int32(c.Uint("tokenizer.ggml.eos_token_id")), AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false), }, ), ImageProcessor: newImageProcessor(c), VisionModel: newVisionModel(c), TextModel: newTextModel(c), } m.Cache = kvcache.NewWrapperCache( kvcache.NewChunkedAttentionCache(int32(c.Uint("attention.chunk_size", 8192)), m.Shift), kvcache.NewCausalCache(m.Shift), ) return &m, nil } func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) { if len(m.VisionModel.Layers) < 1 { return nil, model.ErrNoVisionModel } img, _, err := image.Decode(bytes.NewReader(multimodalData)) if err != nil { return nil, err } pixelsLocal, pixelsGlobal, size, err := m.ProcessImage(img) if err != nil { return nil, err } tilesLocal, err := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels) if err != nil { return nil, err } ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, ratioW, size.Y, m.numChannels).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW*size.Y/ratioH, ratioH, ratioW, m.numChannels).Permute(ctx, 0, 3, 2, 1).Contiguous(ctx) tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, size.Y/ratioH, m.numChannels, ratioH*ratioW) pixelValues := tilesLocal if len(pixelsGlobal) > 0 { tilesGlobal, err := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels) if err != nil { return nil, err } pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3) } visionOutputs := m.VisionModel.Forward(ctx, pixelValues) visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3)) projectedOutputs := m.Projector.Forward(ctx, visionOutputs) return &chunks{Model: m, Tensor: projectedOutputs, aspectRatio: image.Point{ratioW, ratioH}}, nil } type chunks struct { *Model ml.Tensor aspectRatio image.Point dataOnce sync.Once data []float32 } type chunk struct { *chunks s, n int } func (r *chunk) floats() []float32 { r.dataOnce.Do(func() { temp := r.Backend().NewContext() defer temp.Close() temp.Forward(r.Tensor).Compute(r.Tensor) r.data = r.Floats() }) return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)] } func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) { var result []input.Input for _, inp := range inputs { if inp.Multimodal == nil { result = append(result, inp) continue } t := inp.Multimodal.(*chunks) var imageInputs []input.Input imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|> var offset int patchesPerChunk := t.Dim(1) if t.aspectRatio.Y*t.aspectRatio.X > 1 { patchesPerChunk = t.Dim(1) / (t.aspectRatio.X*t.aspectRatio.Y + 1) for range t.aspectRatio.Y { for x := range t.aspectRatio.X { imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|> imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...) if x < t.aspectRatio.X-1 { imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|> } offset += patchesPerChunk } imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|> } } imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|> imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|> imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...) imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|> result = append(result, imageInputs...) } return result, nil } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions)) if err != nil { return nil, err } outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)) if err != nil { return nil, err } return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil } func init() { model.Register("llama4", New) }