Files
ollama37/docs/capabilities/thinking.mdx
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

154 lines
4.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
title: Thinking
---
Thinking-capable models emit a `thinking` field that separates their reasoning trace from the final answer.
Use this capability to audit model steps, animate the model *thinking* in a UI, or hide the trace entirely when you only need the final response.
## Supported models
- [Qwen 3](https://ollama.com/library/qwen3)
- [GPT-OSS](https://ollama.com/library/gpt-oss) *(use `think` levels: `low`, `medium`, `high` — the trace cannot be fully disabled)*
- [DeepSeek-v3.1](https://ollama.com/library/deepseek-v3.1)
- [DeepSeek R1](https://ollama.com/library/deepseek-r1)
- Browse the latest additions under [thinking models](https://ollama.com/search?c=thinking)
## Enable thinking in API calls
Set the `think` field on chat or generate requests. Most models accept booleans (`true`/`false`).
GPT-OSS instead expects one of `low`, `medium`, or `high` to tune the trace length.
The `message.thinking` (chat endpoint) or `thinking` (generate endpoint) field contains the reasoning trace while `message.content` / `response` holds the final answer.
<Tabs>
<Tab title="cURL">
```shell
curl http://localhost:11434/api/chat -d '{
"model": "qwen3",
"messages": [{
"role": "user",
"content": "How many letter r are in strawberry?"
}],
"think": true,
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'How many letter r are in strawberry?'}],
think=True,
stream=False,
)
print('Thinking:\n', response.message.thinking)
print('Answer:\n', response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'deepseek-r1',
messages: [{ role: 'user', content: 'How many letter r are in strawberry?' }],
think: true,
stream: false,
})
console.log('Thinking:\n', response.message.thinking)
console.log('Answer:\n', response.message.content)
```
</Tab>
</Tabs>
<Note>
GPT-OSS requires `think` to be set to `"low"`, `"medium"`, or `"high"`. Passing `true`/`false` is ignored for that model.
</Note>
## Stream the reasoning trace
Thinking streams interleave reasoning tokens before answer tokens. Detect the first `thinking` chunk to render a "thinking" section, then switch to the final reply once `message.content` arrives.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
think=True,
stream=True,
)
in_thinking = False
for chunk in stream:
if chunk.message.thinking and not in_thinking:
in_thinking = True
print('Thinking:\n', end='')
if chunk.message.thinking:
print(chunk.message.thinking, end='')
elif chunk.message.content:
if in_thinking:
print('\n\nAnswer:\n', end='')
in_thinking = False
print(chunk.message.content, end='')
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
think: true,
stream: true,
})
let inThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking && !inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
if (chunk.message.thinking) {
process.stdout.write(chunk.message.thinking)
} else if (chunk.message.content) {
if (inThinking) {
process.stdout.write('\n\nAnswer:\n')
inThinking = false
}
process.stdout.write(chunk.message.content)
}
}
}
main()
```
</Tab>
</Tabs>
## CLI quick reference
- Enable thinking for a single run: `ollama run deepseek-r1 --think "Where should I visit in Lisbon?"`
- Disable thinking: `ollama run deepseek-r1 --think=false "Summarize this article"`
- Hide the trace while still using a thinking model: `ollama run deepseek-r1 --hidethinking "Is 9.9 bigger or 9.11?"`
- Inside interactive sessions, toggle with `/set think` or `/set nothink`.
- GPT-OSS only accepts levels: `ollama run gpt-oss --think=low "Draft a headline"` (replace `low` with `medium` or `high` as needed).
<Note>Thinking is enabled by default in the CLI and API for supported models.</Note>