Files
ollama37/docs/capabilities/tool-calling.mdx
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

778 lines
22 KiB
Plaintext

---
title: Tool calling
---
Ollama supports tool calling (also known as function calling) which allows a model to invoke tools and incorporate their results into its replies.
## Calling a single tool
Invoke a single tool and include its response in a follow-up request.
Also known as "single-shot" tool calling.
<Tabs>
<Tab title="cURL">
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with a single tool result**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
Install the Ollama Python SDK:
```bash
# with pip
pip install ollama -U
# with uv
uv add ollama
```
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C",
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
messages.append(response.message)
if response.message.tool_calls:
# only recommended for models which only return a single tool call
call = response.message.tool_calls[0]
result = get_temperature(**call.function.arguments)
# add the tool result to the messages
messages.append({"role": "tool", "tool_name": call.function.name, "content": str(result)})
final_response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
Install the Ollama JavaScript library:
```bash
# with npm
npm i ollama
# with bun
bun i ollama
```
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
'Tokyo': '18°C',
}
return temperatures[city] ?? 'Unknown'
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
if (response.message.tool_calls?.length) {
// only recommended for models which only return a single tool call
const call = response.message.tool_calls[0]
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Parallel tool calling
<Tabs>
<Tab title="cURL">
Request multiple tool calls in parallel, then send all tool responses back to the model.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
},
{
"type": "function",
"function": {
"name": "get_conditions",
"description": "Get the current weather conditions for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with multiple tool results**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 1,
"name": "get_conditions",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 2,
"name": "get_temperature",
"arguments": {"city": "London"}
}
},
{
"type": "function",
"function": {
"index": 3,
"name": "get_conditions",
"arguments": {"city": "London"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Partly cloudy"},
{"role": "tool", "tool_name": "get_temperature", "content": "15°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Rainy"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures.get(city, "Unknown")
def get_conditions(city: str) -> str:
"""Get the current weather conditions for a city
Args:
city: The name of the city
Returns:
The current weather conditions for the city
"""
conditions = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions.get(city, "Unknown")
messages = [{'role': 'user', 'content': 'What are the current weather conditions and temperature in New York and London?'}]
# The python client automatically parses functions as a tool schema so we can pass them directly
# Schemas can be passed directly in the tools list as well
response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
# add the assistant message to the messages
messages.append(response.message)
if response.message.tool_calls:
# process each tool call
for call in response.message.tool_calls:
# execute the appropriate tool
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
elif call.function.name == 'get_conditions':
result = get_conditions(**call.function.arguments)
else:
result = 'Unknown tool'
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': str(result)})
# generate the final response
final_response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: { [key: string]: string } = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures[city] || "Unknown"
}
function getConditions(city: string): string {
const conditions: { [key: string]: string } = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions[city] || "Unknown"
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
{
type: 'function',
function: {
name: 'get_conditions',
description: 'Get the current weather conditions for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
]
const messages = [{ role: 'user', content: 'What are the current weather conditions and temperature in New York and London?' }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true
})
// add the assistant message to the messages
messages.push(response.message)
if (response.message.tool_calls) {
// process each tool call
for (const call of response.message.tool_calls) {
// execute the appropriate tool
let result: string
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
result = getTemperature(args.city)
} else if (call.function.name === 'get_conditions') {
const args = call.function.arguments as { city: string }
result = getConditions(args.city)
} else {
result = 'Unknown tool'
}
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
}
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Multi-turn tool calling (Agent loop)
An agent loop allows the model to decide when to invoke tools and incorporate their results into its replies.
It also might help to tell the model that it is in a loop and can make multiple tool calls.
<Tabs>
<Tab title="Python">
```python
from ollama import chat, ChatResponse
def add(a: int, b: int) -> int:
"""Add two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The sum of the two numbers
"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiply two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The product of the two numbers
"""
return a * b
available_functions = {
'add': add,
'multiply': multiply,
}
messages = [{'role': 'user', 'content': 'What is (11434+12341)*412?'}]
while True:
response: ChatResponse = chat(
model='qwen3',
messages=messages,
tools=[add, multiply],
think=True,
)
messages.append(response.message)
print("Thinking: ", response.message.thinking)
print("Content: ", response.message.content)
if response.message.tool_calls:
for tc in response.message.tool_calls:
if tc.function.name in available_functions:
print(f"Calling {tc.function.name} with arguments {tc.function.arguments}")
result = available_functions[tc.function.name](**tc.function.arguments)
print(f"Result: {result}")
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': tc.function.name, 'content': str(result)})
else:
# end the loop when there are no more tool calls
break
# continue the loop with the updated messages
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
type ToolName = 'add' | 'multiply'
function add(a: number, b: number): number {
return a + b
}
function multiply(a: number, b: number): number {
return a * b
}
const availableFunctions: Record<ToolName, (a: number, b: number) => number> = {
add,
multiply,
}
const tools = [
{
type: 'function',
function: {
name: 'add',
description: 'Add two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
{
type: 'function',
function: {
name: 'multiply',
description: 'Multiply two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
]
async function agentLoop() {
const messages = [{ role: 'user', content: 'What is (11434+12341)*412?' }]
while (true) {
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
console.log('Thinking:', response.message.thinking)
console.log('Content:', response.message.content)
const toolCalls = response.message.tool_calls ?? []
if (toolCalls.length) {
for (const call of toolCalls) {
const fn = availableFunctions[call.function.name as ToolName]
if (!fn) {
continue
}
const args = call.function.arguments as { a: number; b: number }
console.log(`Calling ${call.function.name} with arguments`, args)
const result = fn(args.a, args.b)
console.log(`Result: ${result}`)
messages.push({ role: 'tool', tool_name: call.function.name, content: String(result) })
}
} else {
break
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
## Tool calling with streaming
When streaming, gather every chunk of `thinking`, `content`, and `tool_calls`, then return those fields together with any tool results in the follow-up request.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
while True:
stream = chat(
model='qwen3',
messages=messages,
tools=[get_temperature],
stream=True,
think=True,
)
thinking = ''
content = ''
tool_calls = []
done_thinking = False
# accumulate the partial fields
for chunk in stream:
if chunk.message.thinking:
thinking += chunk.message.thinking
print(chunk.message.thinking, end='', flush=True)
if chunk.message.content:
if not done_thinking:
done_thinking = True
print('\n')
content += chunk.message.content
print(chunk.message.content, end='', flush=True)
if chunk.message.tool_calls:
tool_calls.extend(chunk.message.tool_calls)
print(chunk.message.tool_calls)
# append accumulated fields to the messages
if thinking or content or tool_calls:
messages.append({'role': 'assistant', 'thinking': thinking, 'content': content, 'tool_calls': tool_calls})
if not tool_calls:
break
for call in tool_calls:
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
else:
result = 'Unknown tool'
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': result})
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
}
return temperatures[city] ?? 'Unknown'
}
const getTemperatureTool = {
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({
model: 'qwen3',
messages,
tools: [getTemperatureTool],
stream: true,
think: true,
})
let thinking = ''
let content = ''
const toolCalls: any[] = []
let doneThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking) {
thinking += chunk.message.thinking
process.stdout.write(chunk.message.thinking)
}
if (chunk.message.content) {
if (!doneThinking) {
doneThinking = true
process.stdout.write('\n')
}
content += chunk.message.content
process.stdout.write(chunk.message.content)
}
if (chunk.message.tool_calls?.length) {
toolCalls.push(...chunk.message.tool_calls)
console.log(chunk.message.tool_calls)
}
}
if (thinking || content || toolCalls.length) {
messages.push({ role: 'assistant', thinking, content, tool_calls: toolCalls } as any)
}
if (!toolCalls.length) {
break
}
for (const call of toolCalls) {
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
messages.push({ role: 'tool', tool_name: call.function.name, content: result } )
} else {
messages.push({ role: 'tool', tool_name: call.function.name, content: 'Unknown tool' } )
}
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
This loop streams the assistant response, accumulates partial fields, passes them back together, and appends the tool results so the model can complete its answer.
## Using functions as tools with Ollama Python SDK
The Python SDK automatically parses functions as a tool schema so we can pass them directly.
Schemas can still be passed if needed.
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
available_functions = {
'get_temperature': get_temperature,
}
# directly pass the function as part of the tools list
response = chat(model='qwen3', messages=messages, tools=available_functions.values(), think=True)
```