Files
ollama37/docs/capabilities/vision.mdx
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

86 lines
1.9 KiB
Plaintext

---
title: Vision
---
Vision models accept images alongside text so the model can describe, classify, and answer questions about what it sees.
## Quick start
```shell
ollama run gemma3 ./image.png whats in this image?
```
## Usage with Ollama's API
Provide an `images` array. SDKs accept file paths, URLs or raw bytes while the REST API expects base64-encoded image data.
<Tabs>
<Tab title="cURL">
```shell
# 1. Download a sample image
curl -L -o test.jpg "https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg"
# 2. Encode the image
IMG=$(base64 < test.jpg | tr -d '\n')
# 3. Send it to Ollama
curl -X POST http://localhost:11434/api/chat \
-H "Content-Type: application/json" \
-d '{
"model": "gemma3",
"messages": [{
"role": "user",
"content": "What is in this image?",
"images": ["'"$IMG"'"]
}],
"stream": false
}'
"
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
# from pathlib import Path
# Pass in the path to the image
path = input('Please enter the path to the image: ')
# You can also pass in base64 encoded image data
# img = base64.b64encode(Path(path).read_bytes()).decode()
# or the raw bytes
# img = Path(path).read_bytes()
response = chat(
model='gemma3',
messages=[
{
'role': 'user',
'content': 'What is in this image? Be concise.',
'images': [path],
}
],
)
print(response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const imagePath = '/absolute/path/to/image.jpg'
const response = await ollama.chat({
model: 'gemma3',
messages: [
{ role: 'user', content: 'What is in this image?', images: [imagePath] }
],
stream: false,
})
console.log(response.message.content)
```
</Tab>
</Tabs>