Files
ollama37/model/models/llama4/model_vision.go
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

254 lines
9.2 KiB
Go

package llama4
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type VisionAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
// applyVisionRotaryEmbedding applies 2D rotary embedding to the input tensor.
// This is equivalent to the Pytorch implmentation using half rotations:
//
// cos, sin = torch.cos(freqs), torch.sin(freqs)
// cos = cos.unsqueeze(-1)
// sin = sin.unsqueeze(-1)
// t = t.reshape(*t.shape[:-1], -1, 2)
// t_out = (t * cos) + (_rotate_half(t) * sin)
// t_out = t_out.flatten(3)
//
// Which is equivalent to the Pytorch implementation using complex numbers:
//
// t_ = torch.view_as_complex(t.float().reshape(*t.shape[:-1], -1, 2))
// freqs_ci = reshape_for_broadcast(freqs_ci=freq_cis, t=t_) # freqs_ci[:,:,None,:]
// freqs_ci = freqs_ci.to(t_.device)
// t_out = torch.view_as_real(t_ * freqs_ci).flatten(3)
//
// Due to the 1) the dimensional and 2) the datatype limitations of current backends,
// we need to use a different approach to achieve the same result.
func applyVisionRotaryEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
width, height, channels, tiles := t.Dim(0), t.Dim(1), t.Dim(2), t.Dim(3)
t = t.Reshape(ctx, 2, t.Dim(0)/2, t.Dim(1)*t.Dim(2)*t.Dim(3))
// t1 = t[..., 0::2]
t1 := t.View(ctx, 0, 1, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2)).Contiguous(ctx)
t1 = t1.Reshape(ctx, width/2, height, channels, tiles)
// t2 = t[..., 1::2]
t2 := t.View(ctx, t.Stride(0), 1, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2)).Contiguous(ctx)
t2 = t2.Reshape(ctx, width/2, height, channels, tiles)
// cos_out = torch.stack((t1 * cos, t2 * cos), dim=-1)
cosOut := t1.Mul(ctx, cos).Concat(ctx, t2.Mul(ctx, cos), 0)
cosOut = cosOut.Reshape(ctx, cosOut.Dim(0)/2, 2, cosOut.Dim(1)*cosOut.Dim(2)*cosOut.Dim(3))
cosOut = cosOut.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
cosOut = cosOut.Reshape(ctx, width, height, channels, tiles)
// sin_out = torch.stack((-t2 * sin, t1 * sin), dim=-1)
sinOut := t2.Neg(ctx).Mul(ctx, sin).Concat(ctx, t1.Mul(ctx, sin), 0)
sinOut = sinOut.Reshape(ctx, sinOut.Dim(0)/2, 2, sinOut.Dim(1)*sinOut.Dim(2)*sinOut.Dim(3))
sinOut = sinOut.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
sinOut = sinOut.Reshape(ctx, width, height, channels, tiles)
return cosOut.Add(ctx, sinOut)
}
func (sa *VisionAttention) Forward(ctx ml.Context, hiddenState, cos, sin ml.Tensor, opts *VisionOptions) ml.Tensor {
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
key := sa.Key.Forward(ctx, hiddenState)
value := sa.Value.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), query.Dim(2))
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), key.Dim(2))
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), value.Dim(2))
query = applyVisionRotaryEmbedding(ctx, query, cos, sin)
key = applyVisionRotaryEmbedding(ctx, key, cos, sin)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), attention.Dim(3))
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"fc1"`
FC2 *nn.Linear `gguf:"fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
hiddenStates = mlp.FC1.Forward(ctx, hiddenStates).GELU(ctx)
hiddenStates = mlp.FC2.Forward(ctx, hiddenStates)
return hiddenStates
}
type VisionLayer struct {
InputLayerNorm *nn.LayerNorm `gguf:"attn_norm"`
*VisionAttention
PostAttentionNorm *nn.LayerNorm `gguf:"ffn_norm"`
*VisionMLP `gguf:"mlp"`
}
func (e *VisionLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionOptions) ml.Tensor {
residual := hiddenStates
// self attention
hiddenStates = e.InputLayerNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.VisionAttention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
// MLP
residual = hiddenStates
hiddenStates = e.PostAttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.VisionMLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type VisionAdapter struct {
FC1 *nn.Linear `gguf:"mlp.fc1"`
FC2 *nn.Linear `gguf:"mlp.fc2"`
}
func (a *VisionAdapter) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
patches := hiddenStates.Dim(1)
patchSize := int(math.Sqrt(float64(patches)))
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), patchSize, patchSize, hiddenStates.Dim(2))
channels, width, height, tiles := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3)
channels, width = int(float32(channels)/opts.pixelShuffleRatio), int(float32(width)*opts.pixelShuffleRatio)
hiddenStates = hiddenStates.Reshape(ctx, channels, width, height, tiles)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
channels, height = int(float32(channels)/opts.pixelShuffleRatio), int(float32(height)*opts.pixelShuffleRatio)
hiddenStates = hiddenStates.Reshape(ctx, channels, width, height, tiles)
hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Reshape(ctx, channels, width*height, tiles)
hiddenStates = a.FC1.Forward(ctx, hiddenStates).GELU(ctx)
hiddenStates = a.FC2.Forward(ctx, hiddenStates).GELU(ctx)
return hiddenStates
}
type VisionOptions struct {
hiddenSize, numHeads int
imageSize, patchSize int
ropeTheta float32
eps float32
pixelShuffleRatio float32
}
type PatchEmbedding struct {
*nn.Linear
}
func (p *PatchEmbedding) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionOptions) ml.Tensor {
kernel := ctx.Input().Empty(ml.DTypeF32, opts.patchSize, opts.patchSize, hiddenStates.Dim(2))
hiddenStates = kernel.IM2Col(ctx, hiddenStates, opts.patchSize, opts.patchSize, 0, 0, 1, 1)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), hiddenStates.Dim(1)*hiddenStates.Dim(2), hiddenStates.Dim(3))
return p.Linear.Forward(ctx, hiddenStates)
}
type VisionModel struct {
Layers []VisionLayer `gguf:"blk"`
*PatchEmbedding `gguf:"patch_embedding"`
ClassEmbedding ml.Tensor `gguf:"class_embedding"`
PositionalEmbedding ml.Tensor `gguf:"positional_embedding_vlm"`
LayerNormPre *nn.LayerNorm `gguf:"layernorm_pre"`
LayerNormPost *nn.LayerNorm `gguf:"layernorm_post"`
*VisionAdapter `gguf:"vision_adapter"`
*VisionOptions
}
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionLayer, c.Uint("vision.block_count")),
VisionOptions: &VisionOptions{
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
ropeTheta: float32(c.Float("vision.rope.freq_base")),
eps: c.Float("vision.layer_norm_epsilon"),
pixelShuffleRatio: float32(c.Float("vision.pixel_shuffle_ratio")),
},
}
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionOptions)
hiddenStates = hiddenStates.Concat(ctx, m.ClassEmbedding.Repeat(ctx, 2, hiddenStates.Dim(2)), 1)
hiddenStates = hiddenStates.Add(ctx, m.PositionalEmbedding)
hiddenStates = m.LayerNormPre.Forward(ctx, hiddenStates, m.eps)
cos, sin := m.rotaryEmbedding(ctx)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionOptions)
}
hiddenStates = m.LayerNormPost.Forward(ctx, hiddenStates, m.eps)
hiddenStates = hiddenStates.Pad(ctx, 0, -1, 0, 0)
hiddenStates = m.VisionAdapter.Forward(ctx, hiddenStates, m.VisionOptions)
return hiddenStates
}
// floorDiv is a helper function to perform floor division. This mimics PyTorch's div(round_mode='floor') function
// which in turn mimics Python's // operator.
func floorDiv[T int | int16 | int32 | int64 | uint | uint16 | uint32 | uint64](a, b T) T {
if b == 0 {
panic("division by zero")
}
if (a >= 0 && b > 0) || (a <= 0 && b < 0) || a%b == 0 {
return a / b
}
return a/b - 1
}
func (m *VisionModel) rotaryEmbedding(ctx ml.Context) (ml.Tensor, ml.Tensor) {
patchesPerSide := m.imageSize / m.patchSize
numPatches := patchesPerSide*patchesPerSide + 1
headDim := m.hiddenSize / m.numHeads
freqDim := headDim / 2
freqs := make([]float32, numPatches*freqDim)
for i := range numPatches - 1 {
for j := 0; j < freqDim; j += 2 {
positionX := i*freqDim/2 + j/2
positionY := (i+numPatches)*freqDim/2 + j/2
ropeFreq := math.Pow(float64(m.ropeTheta), float64(j)*2/float64(headDim))
freqs[positionX] = float32(float64(1+i-floorDiv(i, patchesPerSide)*patchesPerSide) / ropeFreq)
freqs[positionY] = float32(float64(1+floorDiv(i, patchesPerSide)) / ropeFreq)
}
}
ropeFreqs := ctx.Input().FromFloats(freqs, freqDim/2, numPatches, 2)
ropeFreqs = ropeFreqs.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
ropeFreqs = ropeFreqs.Reshape(ctx, freqDim, 1, numPatches)
return ropeFreqs.Cos(ctx), ropeFreqs.Sin(ctx)
}