mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 19:56:59 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
200 lines
6.3 KiB
Go
200 lines
6.3 KiB
Go
package qwen3vl
|
|
|
|
import (
|
|
"cmp"
|
|
"math"
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/fast"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type TextOptions struct {
|
|
hiddenSize,
|
|
numHeads,
|
|
numKVHeads,
|
|
keyLength,
|
|
valueLength int
|
|
|
|
eps,
|
|
ropeBase,
|
|
ropeScale float32
|
|
mropeSections []int
|
|
|
|
numExperts, numExpertsUsed int
|
|
normTopKProb bool
|
|
}
|
|
|
|
func (o TextOptions) headDim() int {
|
|
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
|
|
}
|
|
|
|
func (o TextOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
|
|
return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/float32(math.Sqrt(float64(o.ropeScale))),
|
|
rope.WithMRoPESections(o.mropeSections),
|
|
)
|
|
}
|
|
|
|
type TextAttention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
}
|
|
|
|
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
|
|
query := sa.Query.Forward(ctx, hiddenStates)
|
|
key := sa.Key.Forward(ctx, hiddenStates)
|
|
value := sa.Value.Forward(ctx, hiddenStates)
|
|
|
|
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
|
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
|
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
|
|
|
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
|
|
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
|
|
|
|
query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
|
|
key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
|
|
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type TextMLP interface {
|
|
Forward(ml.Context, ml.Tensor, *TextOptions) ml.Tensor
|
|
}
|
|
|
|
type sparse struct {
|
|
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
|
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
|
|
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
|
|
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
|
|
}
|
|
|
|
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
|
|
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
|
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
|
|
routerLogits := mlp.Router.Forward(ctx, hiddenStates)
|
|
|
|
routingWeights := routerLogits.Softmax(ctx)
|
|
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
|
|
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
|
|
if opts.normTopKProb {
|
|
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
|
|
routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
|
|
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
|
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
|
|
|
|
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
|
|
experts = experts.Mul(ctx, routingWeights)
|
|
|
|
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
|
for i := 1; i < opts.numExpertsUsed; i++ {
|
|
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
|
}
|
|
|
|
return nextStates
|
|
}
|
|
|
|
type dense struct {
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
}
|
|
|
|
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *TextOptions) ml.Tensor {
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
|
return mlp.Down.Forward(ctx, hiddenStates)
|
|
}
|
|
|
|
type TextLayer struct {
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
*TextAttention
|
|
|
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
TextMLP
|
|
}
|
|
|
|
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
|
residual := hiddenStates
|
|
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.TextAttention.Forward(ctx, hiddenStates, positions, cache, opts)
|
|
|
|
if outputs != nil {
|
|
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
|
|
residual = hiddenStates
|
|
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.TextMLP.Forward(ctx, hiddenStates, opts)
|
|
return hiddenStates.Add(ctx, residual)
|
|
}
|
|
|
|
type TextModel struct {
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Layers []TextLayer `gguf:"blk"`
|
|
|
|
Options *TextOptions
|
|
}
|
|
|
|
var _ model.Model = (*Model)(nil)
|
|
|
|
func newTextModel(c fs.Config) *TextModel {
|
|
layers := make([]TextLayer, c.Uint("block_count"))
|
|
for i := range layers {
|
|
if strings.HasSuffix(c.String("general.architecture"), "moe") {
|
|
layers[i].TextMLP = &sparse{}
|
|
} else {
|
|
layers[i].TextMLP = &dense{}
|
|
}
|
|
}
|
|
|
|
m := TextModel{
|
|
Layers: layers,
|
|
Options: &TextOptions{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
keyLength: int(c.Uint("attention.key_length")),
|
|
valueLength: int(c.Uint("attention.value_length")),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.scaling.factor", 1),
|
|
numExperts: int(c.Uint("expert_count")),
|
|
numExpertsUsed: int(c.Uint("expert_used_count")),
|
|
normTopKProb: c.Bool("norm_top_k_prob", true),
|
|
mropeSections: slices.Collect(func(yield func(int) bool) {
|
|
for _, section := range c.Ints("mrope_sections", []int32{24, 20, 20}) {
|
|
if !yield(int(section)) {
|
|
return
|
|
}
|
|
}
|
|
}),
|
|
},
|
|
}
|
|
|
|
return &m
|
|
}
|