Files
ollama37/model/models/qwen3vl/model_vision.go
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

269 lines
9.7 KiB
Go

package qwen3vl
import (
"iter"
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type VisionAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
func (sa *VisionAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts VisionOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, query.Dim(1))
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key := sa.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numHeads, key.Dim(1))
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
value := sa.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numHeads, value.Dim(1))
attention := nn.Attention(ctx, query, key, value, math.Pow(float64(opts.headDim()), -0.5), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2))
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"linear_fc1"`
FC2 *nn.Linear `gguf:"linear_fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts VisionOptions) ml.Tensor {
return mlp.FC2.Forward(ctx, mlp.FC1.Forward(ctx, hiddenStates).GELU(ctx))
}
type VisionEncoderLayer struct {
Norm1 *nn.LayerNorm `gguf:"norm1"`
Attention *VisionAttention
Norm2 *nn.LayerNorm `gguf:"norm2"`
MLP *VisionMLP `gguf:"mlp"`
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts VisionOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.Attention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type VisionOptions struct {
hiddenSize,
numHeads,
patchSize,
numChannels,
spatialMergeSize,
temporalPatchSize,
gridPerSide int
eps,
ropeTheta float32
deepstackVisualIndexes []int32
mropeSections []int
}
func (o VisionOptions) headDim() int {
return o.hiddenSize / o.numHeads
}
type VisionPatchMerger struct {
Norm *nn.LayerNorm `gguf:"norm"`
FC1 *nn.Linear `gguf:"linear_fc1"`
FC2 *nn.Linear `gguf:"linear_fc2"`
}
func (m *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, postshuffleNorm bool, opts VisionOptions) ml.Tensor {
hiddenSize := opts.hiddenSize * opts.spatialMergeSize * opts.spatialMergeSize
if postshuffleNorm {
visionOutputs = visionOutputs.Reshape(ctx, hiddenSize, -1)
}
visionOutputs = m.Norm.Forward(ctx, visionOutputs, opts.eps)
visionOutputs = visionOutputs.Reshape(ctx, hiddenSize, -1)
return m.FC2.Forward(ctx, m.FC1.Forward(ctx, visionOutputs).GELU(ctx))
}
type VisionPositionEmbedding struct {
PositionEmbedding *nn.Embedding `gguf:"pos_embed"`
}
func makeSlice2D[T int32 | float32](n0, n1 int) iter.Seq[[]T] {
return func(yield func([]T) bool) {
for range n0 {
if !yield(make([]T, n1)) {
return
}
}
}
}
func (m *VisionPositionEmbedding) Forward(ctx ml.Context, hiddenStates ml.Tensor, grid *Grid, opts VisionOptions) ml.Tensor {
indexSlice := slices.Collect(makeSlice2D[int32](4, grid.Height*grid.Width))
weightSlice := slices.Collect(makeSlice2D[float32](4, grid.Height*grid.Width))
stepHeight := float32(opts.gridPerSide-1) / float32(grid.Height-1)
stepWidth := float32(opts.gridPerSide-1) / float32(grid.Width-1)
var i int
for h := range grid.Height {
for w := range grid.Width {
y, x := float32(h)*stepHeight, float32(w)*stepWidth
floorY, floorX := int32(y), int32(x)
ceilY, ceilX := min(floorY+1, int32(opts.gridPerSide-1)), min(floorX+1, int32(opts.gridPerSide-1))
indexSlice[0][i] = floorY*int32(opts.gridPerSide) + floorX
indexSlice[1][i] = floorY*int32(opts.gridPerSide) + ceilX
indexSlice[2][i] = ceilY*int32(opts.gridPerSide) + floorX
indexSlice[3][i] = ceilY*int32(opts.gridPerSide) + ceilX
weightSlice[0][i] = (1 - (y - float32(floorY))) * (1 - (x - float32(floorX)))
weightSlice[1][i] = (1 - (y - float32(floorY))) * (x - float32(floorX))
weightSlice[2][i] = (y - float32(floorY)) * (1 - (x - float32(floorX)))
weightSlice[3][i] = (y - float32(floorY)) * (x - float32(floorX))
i++
}
}
indices := ctx.Input().FromInts(slices.Concat(indexSlice...), grid.Height*grid.Width*4)
weights := ctx.Input().FromFloats(slices.Concat(weightSlice...), 1, grid.Height*grid.Width*4)
n := hiddenStates.Dim(0)
positionEmbeds := m.PositionEmbedding.Forward(ctx, indices)
positionEmbeds = positionEmbeds.Mul(ctx, weights)
positionEmbeds = positionEmbeds.Reshape(ctx, n, -1, 4)
positionEmbeds = positionEmbeds.View(ctx, 0, n, positionEmbeds.Stride(1), grid.Height*grid.Width).
Add(ctx, positionEmbeds.View(ctx, 1*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width)).
Add(ctx, positionEmbeds.View(ctx, 2*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width)).
Add(ctx, positionEmbeds.View(ctx, 3*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width))
positionEmbeds = positionEmbeds.Reshape(ctx, -1, grid.Width/opts.spatialMergeSize, opts.spatialMergeSize, grid.Height/opts.spatialMergeSize)
positionEmbeds = positionEmbeds.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, n, -1)
return hiddenStates.Add(ctx, positionEmbeds)
}
type VisionModel struct {
PatchEmbedding *nn.Conv3D `gguf:"patch_embed"`
PositionEmbedding *VisionPositionEmbedding
Layers []VisionEncoderLayer `gguf:"blk"`
PatchMerger *VisionPatchMerger `gguf:"merger"`
DeepstackMerger []*VisionPatchMerger `gguf:"deepstack_merger"`
VisionOptions
}
func (m *VisionModel) positions(ctx ml.Context, grid *Grid) (_, _ ml.Tensor) {
indices := ctx.Input().FromInts(slices.Collect(func(yield func(int32) bool) {
for y := range grid.Height {
for x := range grid.Width {
if !yield(int32(y)) {
return
}
if !yield(int32(x)) {
return
}
}
}
}), grid.Width*grid.Height*2)
indices = indices.Reshape(ctx, -1, grid.Width/m.spatialMergeSize, m.spatialMergeSize, grid.Height/m.spatialMergeSize)
indices = indices.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
indices = indices.Reshape(ctx, -1)
halfDim := m.headDim() / 2
maxGrid := max(grid.Height, grid.Width)
frequencies := ctx.Input().FromFloats(slices.Collect(func(yield func(float32) bool) {
ropeTheta := float64(m.ropeTheta)
for i := range maxGrid {
for j := range halfDim / 2 {
if !yield(float32(i) / float32(math.Pow(ropeTheta, float64(j*2)/float64(halfDim)))) {
return
}
}
}
}), halfDim/2, maxGrid)
embeds := frequencies.Rows(ctx, indices)
embeds = embeds.Reshape(ctx, halfDim, 1, -1)
embeds = embeds.Concat(ctx, embeds, 0)
return embeds.Cos(ctx), embeds.Sin(ctx)
}
// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) (ml.Tensor, []ml.Tensor) {
pixelValues = pixelValues.Reshape(ctx, m.patchSize, m.patchSize, m.temporalPatchSize, -1)
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.numChannels, m.patchSize, m.patchSize, m.temporalPatchSize, 0, 0, 0, 1, 1, 1)
hiddenStates = m.PositionEmbedding.Forward(ctx, hiddenStates, grid, m.VisionOptions)
cos, sin := m.positions(ctx, grid)
deepstackStates := make([]ml.Tensor, len(m.deepstackVisualIndexes))
for i, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionOptions)
if i := slices.Index(m.deepstackVisualIndexes, int32(i)); i >= 0 {
deepstackStates[i] = m.DeepstackMerger[i].Forward(ctx, hiddenStates, true, m.VisionOptions)
}
}
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, false, m.VisionOptions)
return hiddenStates, deepstackStates
}
// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
deepstackVisualIndexes := c.Ints("vision.deepstack_visual_indexes")
model := &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
DeepstackMerger: make([]*VisionPatchMerger, len(deepstackVisualIndexes)),
VisionOptions: VisionOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1280)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-6),
ropeTheta: c.Float("vision.rope.freq_base", 10000.0),
spatialMergeSize: int(c.Uint("vision.spatial_merge_size", 2)),
temporalPatchSize: int(c.Uint("vision.temporal_patch_size", 2)),
gridPerSide: int(math.Sqrt(float64(c.Uint("vision.num_positional_embeddings", 2304)))),
mropeSections: slices.Collect(func(yield func(int) bool) {
for _, section := range c.Ints("mrope_sections", []int32{24, 20, 20}) {
if !yield(int(section)) {
return
}
}
}),
deepstackVisualIndexes: deepstackVisualIndexes,
},
}
return model
}