Files
ollama37/model/models/gemma3/model.go
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

152 lines
4.5 KiB
Go

package gemma3
import (
"bytes"
"image"
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.SentencePiece
*VisionModel `gguf:"v"`
*TextModel
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
var _ model.MultimodalProcessor = (*Model)(nil)
type MultiModalProjector struct {
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
InputProjection *nn.Linear `gguf:"mm_input_projection"`
tokensPerImage int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
l := visionOutputs.Dim(0)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
patchesPerImage := imageSize / patchSize
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
return visionOutputs
}
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
MultiModalProjector: &MultiModalProjector{
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
},
}
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues := ctx.Input().FromFloats(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
&input.Input{Token: 255999}, // "<start_of_image>""
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
&input.Input{Token: 256000}, // <end_of_image>
&input.Input{Token: 108}, // "\n\n"
)
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}