Files
ollama37/discover/types.go
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

75 lines
1.9 KiB
Go

package discover
import (
"log/slog"
"path/filepath"
"sort"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
}
// CPU type represents a CPU Package occupying a socket
type CPU struct {
ID string `cpuinfo:"processor"`
VendorID string `cpuinfo:"vendor_id"`
ModelName string `cpuinfo:"model name"`
CoreCount int
EfficiencyCoreCount int // Performance = CoreCount - Efficiency
ThreadCount int
}
func LogDetails(devices []ml.DeviceInfo) {
sort.Sort(sort.Reverse(ml.ByFreeMemory(devices))) // Report devices in order of scheduling preference
for _, dev := range devices {
var libs []string
for _, dir := range dev.LibraryPath {
if strings.Contains(dir, filepath.Join("lib", "ollama")) {
libs = append(libs, filepath.Base(dir))
}
}
typeStr := "discrete"
if dev.Integrated {
typeStr = "iGPU"
}
slog.Info("inference compute",
"id", dev.ID,
"filtered_id", dev.FilteredID,
"library", dev.Library,
"compute", dev.Compute(),
"name", dev.Name,
"description", dev.Description,
"libdirs", strings.Join(libs, ","),
"driver", dev.Driver(),
"pci_id", dev.PCIID,
"type", typeStr,
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
// CPU inference
if len(devices) == 0 {
dev, _ := GetCPUMem()
slog.Info("inference compute",
"id", "cpu",
"library", "cpu",
"compute", "",
"name", "cpu",
"description", "cpu",
"libdirs", "ollama",
"driver", "",
"pci_id", "",
"type", "",
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
}