mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-09 23:37:06 +00:00
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
100 lines
2.5 KiB
Go
100 lines
2.5 KiB
Go
package mllama
|
|
|
|
import (
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
*VisionModel `gguf:"v,vision"`
|
|
*TextModel
|
|
|
|
Projector *nn.Linear `gguf:"mm.0"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
return &Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
|
|
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
}, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
var crossAttentionStates ml.Tensor
|
|
if opts.Images != nil {
|
|
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues, err := ctx.FromFloatSlice(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
m.ImageProcessor.maxNumTiles,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions := make([]int32, 1601)
|
|
for i := range positions {
|
|
positions[i] = int32(i)
|
|
}
|
|
|
|
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
|
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
|
|
}
|
|
|
|
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// TODO: attention mask, cross attention mask
|
|
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, opts.Cache)
|
|
|
|
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return hiddenState.Rows(ctx, outputs), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("mllama", New)
|
|
}
|