mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 07:46:59 +00:00
82 lines
3.2 KiB
Go
82 lines
3.2 KiB
Go
package convert
|
|
|
|
import "github.com/ollama/ollama/fs/ggml"
|
|
|
|
type gemma3Model struct {
|
|
gemmaModel
|
|
TextModel gemma3TextModel `json:"text_config"`
|
|
VisionModel gemma3VisionModel `json:"vision_config"`
|
|
}
|
|
|
|
type gemma3TextModel struct {
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
HeadDim uint32 `json:"head_dim"`
|
|
SlidingWindow uint32 `json:"sliding_window"`
|
|
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
|
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
|
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
|
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
|
}
|
|
|
|
type gemma3VisionModel struct {
|
|
ImageSize uint32 `json:"image_size"`
|
|
NumChannels uint32 `json:"num_channels"`
|
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
}
|
|
|
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
|
kv := p.ModelParameters.KV(t)
|
|
kv["general.architecture"] = "gemma3"
|
|
kv["gemma3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
|
kv["gemma3.block_count"] = p.TextModel.HiddenLayers
|
|
kv["gemma3.text.feed_forward_length"] = p.TextModel.IntermediateSize
|
|
kv["gemma3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
|
kv["gemma3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
|
kv["gemma3.text.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
|
kv["gemma3.attention.key_length"] = p.TextModel.HeadDim
|
|
kv["gemma3.attention.value_length"] = p.TextModel.HeadDim
|
|
kv["gemma3.text.attention.sliding_window"] = p.TextModel.SlidingWindow
|
|
kv["gemma3.text.final_logit_softcapping"] = p.TextModel.FinalLogitSoftcap
|
|
kv["gemma3.text.rope.local.freq_base"] = p.TextModel.RopeLocalTheta
|
|
kv["gemma3.text.rope.global.freq_base"] = p.TextModel.RopeGlobalTheta
|
|
kv["tokenizer.ggml.bos_token_id"] = uint32(2)
|
|
kv["tokenizer.ggml.eot_token_id"] = uint32(1)
|
|
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
|
kv["gemma3.vision.num_channels"] = p.VisionModel.NumChannels
|
|
kv["gemma3.vision.block_count"] = p.VisionModel.HiddenLayers
|
|
return kv
|
|
}
|
|
|
|
func (p *gemma3Model) Replacements() []string {
|
|
return []string{
|
|
"lm_head", "output",
|
|
"model.embed_tokens", "token_embd",
|
|
"model.norm", "output_norm",
|
|
"vision_model.vision_model", "v",
|
|
"language_model.", "",
|
|
"model.layers", "blk",
|
|
"encoder.layers", "blk",
|
|
"vision_tower.vision_model.embeddings", "v",
|
|
"input_layernorm", "attn_norm",
|
|
"self_attn.q_proj", "attn_q",
|
|
"self_attn.q_norm", "attn_q_norm",
|
|
"self_attn.k_proj", "attn_k",
|
|
"self_attn.k_norm", "attn_k_norm",
|
|
"self_attn.v_proj", "attn_v",
|
|
"self_attn.o_proj", "attn_output",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.up_proj", "ffn_up",
|
|
"post_attention_layernorm", "post_attention_norm",
|
|
"pre_feedforward_layernorm", "ffn_norm",
|
|
"post_feedforward_layernorm", "post_ffw_norm",
|
|
}
|
|
}
|