Files
ollama37/llama/patches/0007-sort-devices-by-score.patch
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

86 lines
3.2 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 20:31:38 -0700
Subject: [PATCH] sort devices by score
in the ggml backend loading code, devices
are now sorted by score, ensuring the device
with the fastest acceleration is loaded
---
ggml/src/ggml-backend-reg.cpp | 21 +++++++++++++--------
1 file changed, 13 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 136afec7..f794d9cf 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -175,7 +175,7 @@ struct ggml_backend_reg_entry {
struct ggml_backend_registry {
std::vector<ggml_backend_reg_entry> backends;
- std::vector<ggml_backend_dev_t> devices;
+ std::vector<std::pair<ggml_backend_dev_t, int>> devices;
ggml_backend_registry() {
#ifdef GGML_USE_CUDA
@@ -223,7 +223,7 @@ struct ggml_backend_registry {
}
}
- void register_backend(ggml_backend_reg_t reg, dl_handle_ptr handle = nullptr) {
+ void register_backend(ggml_backend_reg_t reg, int score = -1, dl_handle_ptr handle = nullptr) {
if (!reg) {
return;
}
@@ -234,15 +234,20 @@ struct ggml_backend_registry {
#endif
backends.push_back({ reg, std::move(handle) });
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
- register_device(ggml_backend_reg_dev_get(reg, i));
+ register_device(ggml_backend_reg_dev_get(reg, i), score);
}
}
- void register_device(ggml_backend_dev_t device) {
+ void register_device(ggml_backend_dev_t device, int score = -1) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
#endif
- devices.push_back(device);
+ devices.push_back({device, score});
+ std::stable_sort(devices.begin(), devices.end(),
+ [](const auto & a, const auto & b) {
+ return a.second > b.second;
+ }
+ );
}
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
@@ -286,7 +291,7 @@ struct ggml_backend_registry {
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
- register_backend(reg, std::move(handle));
+ register_backend(reg, score_fn ? score_fn() : -1, std::move(handle));
return reg;
}
@@ -309,7 +314,7 @@ struct ggml_backend_registry {
// remove devices
devices.erase(
std::remove_if(devices.begin(), devices.end(),
- [reg](ggml_backend_dev_t dev) { return ggml_backend_dev_backend_reg(dev) == reg; }),
+ [reg](std::pair<ggml_backend_dev_t, int> dev) { return ggml_backend_dev_backend_reg(dev.first) == reg; }),
devices.end());
// remove backend
@@ -367,7 +372,7 @@ size_t ggml_backend_dev_count() {
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
- return get_reg().devices[index];
+ return get_reg().devices[index].first;
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {