mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 07:46:59 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
24 lines
940 B
Diff
24 lines
940 B
Diff
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
From: Michael Yang <git@mxy.ng>
|
|
Date: Mon, 18 Aug 2025 16:58:39 -0700
|
|
Subject: [PATCH] decode: disable output_all
|
|
|
|
---
|
|
src/llama-context.cpp | 3 +--
|
|
1 file changed, 1 insertion(+), 2 deletions(-)
|
|
|
|
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
|
index e7526e7d..53a5e3a9 100644
|
|
--- a/src/llama-context.cpp
|
|
+++ b/src/llama-context.cpp
|
|
@@ -974,8 +974,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|
const int64_t n_vocab = vocab.n_tokens();
|
|
const int64_t n_embd = hparams.n_embd;
|
|
|
|
- // when computing embeddings, all tokens are output
|
|
- const bool output_all = cparams.embeddings;
|
|
+ const bool output_all = false;
|
|
|
|
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
|
|
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
|