mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 07:46:59 +00:00
FromFloatSlice and FromIntSlice return an error if the shape doesn't match the passed data or if memory can't be allocated. Since these are inputs, the memory being allocated is system memory rather than VRAM. In many cases, the caller can't really handle the error and panics. Empty and Zeros directly panic if they can't allocate memory. This makes things consistent by panicing for the first two cases, removing a fair amount of error handling code. This is also consistent with how Go typically handles these situations.
165 lines
5.3 KiB
Go
165 lines
5.3 KiB
Go
package qwen2
|
|
|
|
import (
|
|
"cmp"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/fast"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads, numKVHeads int
|
|
headDim, ropeDim int
|
|
eps, ropeBase, ropeScale float32
|
|
}
|
|
|
|
type Attention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
}
|
|
|
|
func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
batchSize := hiddenStates.Dim(1)
|
|
headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
|
|
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
|
|
|
query := attn.Query.Forward(ctx, hiddenStates)
|
|
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
key := attn.Key.Forward(ctx, hiddenStates)
|
|
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
|
value := attn.Value.Forward(ctx, hiddenStates)
|
|
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
|
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
|
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
|
|
|
|
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
|
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
|
|
|
|
return attn.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP struct {
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
}
|
|
|
|
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
|
|
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
|
return mlp.Down.Forward(ctx, hiddenStates)
|
|
}
|
|
|
|
type DecoderLayer struct {
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
Attention *Attention
|
|
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
MLP *MLP
|
|
}
|
|
|
|
func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
residual := hiddenStates
|
|
|
|
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
|
if outputs != nil {
|
|
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
|
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
|
residual = hiddenStates
|
|
|
|
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
|
hiddenStates = d.MLP.Forward(ctx, hiddenStates)
|
|
return hiddenStates.Add(ctx, residual)
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
Layers []DecoderLayer `gguf:"blk"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Options
|
|
}
|
|
|
|
// Forward implements model.Model.
|
|
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
|
}
|
|
|
|
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
|
|
}
|
|
|
|
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
|
hiddenStates = m.Output.Forward(ctx, hiddenStates)
|
|
return hiddenStates, nil
|
|
}
|
|
|
|
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
|
|
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
m := Model{
|
|
Layers: make([]DecoderLayer, c.Uint("block_count")),
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
Options: Options{
|
|
hiddenSize: int(c.Uint("embedding_length")),
|
|
numHeads: int(c.Uint("attention.head_count")),
|
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
headDim: int(c.Uint("attention.key_length")),
|
|
ropeDim: int(c.Uint("rope.dimension_count")),
|
|
ropeBase: c.Float("rope.freq_base"),
|
|
ropeScale: c.Float("rope.freq_scale", 1),
|
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
},
|
|
}
|
|
|
|
m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
return &m, nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("qwen2", New)
|
|
}
|