Files
ollama37/model/models/qwen25vl/model.go
Michael Yang 69b2fe9282 fix: qwen25vl assign samebatch in multimodal input (#10789)
setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.

assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.

not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
2025-05-21 09:39:20 -07:00

161 lines
4.5 KiB
Go

package qwen25vl
import (
"bytes"
"fmt"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, nil, err
}
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, nil, err
}
// Calculate tensor dimensions
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues, err := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
if err != nil {
return nil, nil, fmt.Errorf("failed to create tensor from image: %w", err)
}
return pixelValues, grid, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
pixels, grid, err := m.PixelValues(ctx, multimodalData)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
var (
imageToken int32 = 151655
visionStartToken int32 = 151652
visionEndToken int32 = 151653
)
nImg := 0
for _, inp := range inputs {
if inp.Multimodal == nil {
// If not a multimodal input, add it to the result unchanged
result = append(result, inp)
} else {
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
// the image tokens with a prompt, so we add a prefix here
nImg++
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
if err != nil {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
SameBatch: patchesPerChunk,
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}
func init() {
model.Register("qwen25vl", New)
}