Files
ollama37/tests/testcases/runtime/TC-RUNTIME-002.yml
Shang Chieh Tseng ce2882b757 Fix runtime test log checks that require model loading
- Remove CUDA initialization checks from TC-RUNTIME-002 (ggml_cuda_init,
  load_backend only appear when a model is loaded, not at startup)
- Fix bash integer comparison error in TC-RUNTIME-003

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-17 00:00:24 +08:00

110 lines
3.4 KiB
YAML

id: TC-RUNTIME-002
name: GPU Detection
suite: runtime
priority: 2
timeout: 120000
dependencies:
- TC-RUNTIME-001
steps:
- name: Check nvidia-smi inside container
command: docker exec ollama37 nvidia-smi
- name: Check CUDA libraries
command: docker exec ollama37 ldconfig -p | grep -i cuda | head -5
- name: Verify UVM device files
command: |
if [ ! -e /dev/nvidia-uvm ]; then
echo "WARNING: UVM device missing, creating with nvidia-modprobe..."
sudo nvidia-modprobe -u -c=0
echo "Restarting container to pick up UVM devices..."
cd docker && docker compose restart
sleep 15
echo "UVM device fix applied"
else
echo "SUCCESS: UVM device file present"
ls -l /dev/nvidia-uvm
fi
- name: Verify GPU detection in Ollama logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Detection Check ==="
# Check for inference compute with CUDA library
if echo "$LOGS" | grep -q "inference compute.*library=CUDA"; then
echo "SUCCESS: GPU detected with CUDA library"
echo "$LOGS" | grep "inference compute" | head -2
else
echo "ERROR: GPU not detected with CUDA library"
exit 1
fi
# Check for Tesla K80 specifically
if echo "$LOGS" | grep -q 'description="Tesla K80"'; then
echo "SUCCESS: Tesla K80 GPU identified"
else
echo "WARNING: Tesla K80 not explicitly identified"
fi
# Check compute capability 3.7
if echo "$LOGS" | grep -q "compute=3.7"; then
echo "SUCCESS: Compute capability 3.7 detected"
else
echo "WARNING: Compute capability 3.7 not detected"
fi
- name: Check for GPU-related errors in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Error Check ==="
# Check for critical CUDA/CUBLAS errors
if echo "$LOGS" | grep -qE "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed|out of memory)"; then
echo "CRITICAL GPU ERRORS FOUND:"
echo "$LOGS" | grep -E "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed|out of memory)"
exit 1
fi
# Check for CPU fallback (bad!)
if echo "$LOGS" | grep -q "id=cpu library=cpu"; then
echo "ERROR: Ollama fell back to CPU-only mode"
exit 1
fi
echo "SUCCESS: No GPU-related errors found"
- name: Display GPU memory status from logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Memory Status ==="
echo "$LOGS" | grep -E "gpu memory.*library=CUDA" | tail -4
criteria: |
Tesla K80 GPU should be detected by both nvidia-smi AND Ollama CUDA runtime.
Expected:
- nvidia-smi shows Tesla K80 GPU(s) with Driver 470.x
- CUDA libraries are available (libcuda, libcublas, etc.)
- /dev/nvidia-uvm device file exists (required for CUDA runtime)
- Ollama logs show "inference compute" with "library=CUDA"
- NO "id=cpu library=cpu" (CPU fallback)
- NO CUBLAS_STATUS_ errors
- NO CUDA error messages
NOTE: "ggml_cuda_init" and "load_backend" only appear when a model is loaded,
so they are checked in inference tests, not here.
NOTE: If nvidia-smi works but Ollama shows only CPU, the UVM device
files are missing. The test will auto-fix with nvidia-modprobe -u -c=0.
The K80 has 12GB VRAM per GPU. Accept variations in reported memory.