Files
ollama37/model/models/gptoss/model.go
Shang Chieh Tseng d04ea50ced Fix gpt-oss model architecture to match GGUF tensor format
The gpt-oss model architecture code expected fused tensors (attn_qkv,
ffn_gate_up_exps) but the actual GGUF files contain separate tensors
(attn_q/k/v, ffn_gate_exps/up_exps), causing nil pointer panics during
model loading.

Changes:
- model/models/gptoss/model.go: Updated AttentionBlock to use separate
  Query/Key/Value fields instead of fused QKV, modified Forward() to
  compute projections separately
- model/models/gptoss/model.go: Updated MLPBlock to use separate Gate/Up
  fields instead of fused GateUp, simplified Forward() logic
- fs/ggml/type.go: Reorganized MXFP4 tensor type constant ordering
- ml/backend/ggml/ggml/include/ggml.h: Moved GGML_TYPE_MXFP4 to end of
  enum to match GGUF file format specification
- ml/backend/ggml/ggml/src/ggml.c: Updated type name array to match
  reordered enum
- CLAUDE.md: Documented gpt-oss model compatibility fix

Result: gpt-oss:20b model now loads and runs successfully on Tesla K80,
all 25 layers offload to GPU correctly.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-29 23:34:03 +08:00

251 lines
8.7 KiB
Go

package gptoss
import (
"cmp"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Transformer struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TransformerBlocks []TransformerBlock `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Options
}
// Forward implements model.Model.
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
one := ctx.Input().FromFloatSlice([]float32{1}, 1)
for i, block := range m.TransformerBlocks {
m.Cache.SetLayer(i)
if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
// Even layers are sliding window attention.
c.SetLayerType(i % 2)
}
var outputs ml.Tensor
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength,
numExperts,
numExpertsUsed,
originalContextLength int
eps,
ropeBase,
ropeScale float32
}
func (o Options) RoPEOptions() []func(*rope.Options) {
return []func(*rope.Options){
rope.WithTypeNeoX(),
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
// NOTE: ggml sets this implicitly so there's no need to set it here
// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
}
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
type TransformerBlock struct {
Attention *AttentionBlock
MLP *MLPBlock
}
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
}
hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
return hiddenStates
}
type AttentionBlock struct {
Norm *nn.RMSNorm `gguf:"attn_norm"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
Sinks ml.Tensor `gguf:"attn_sinks"`
}
func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
residual := hiddenStates
hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)
// Compute separate Q, K, V projections
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
key := attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
cache.Put(ctx, key, value)
key, value, mask := cache.Get(ctx)
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
scores := key.MulmatFullPrec(ctx, query)
scores = scores.Scale(ctx, 1./math.Sqrt(float64(opts.headDim())))
scores = scores.Add(ctx, mask)
scores = scores.Concat(ctx, attn.Sinks.Reshape(ctx, 1, 1, opts.numHeads, 1).Repeat(ctx, 1, batchSize), 0)
scores = scores.Softmax(ctx)
scores = scores.Pad(ctx, -1, 0, 0, 0)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return attn.Output.Forward(ctx, attention).Add(ctx, residual)
}
type MLPBlock struct {
Norm *nn.RMSNorm `gguf:"ffn_norm"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
residual := hiddenStates
hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routingWeights := mlp.Router.Forward(ctx, hiddenStates)
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
// Compute gate and up separately instead of using fused GateUp
gateStates := mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
gateStates = gateStates.Clamp(ctx, float32(math.Inf(-1)), 7.0)
gateStates = gateStates.QuickGELU(ctx)
upStates := mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
upStates = upStates.Clamp(ctx, -7.0, 7.0)
hiddenStates = gateStates.Mul(ctx, upStates.Add(ctx, one))
// hiddenStates is now [intermediate_size, num_experts_used, seq*batch]
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates.Add(ctx, residual)
}
func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1.),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
},
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
kvcache.NewCausalCache(m.Shift),
)
m.Cache.SetConfig(ml.CacheConfig{CachePadding: 32, PermutedV: true})
return &m, nil
}
func init() {
model.Register("gptoss", New)
}