Files
ollama37/docs/manual-build.md
Shang Chieh Tseng e6e91af024 Separate NVIDIA driver and CUDA toolkit installation steps
- Split Step 3 into two distinct steps:
  - Step 3: NVIDIA Driver 470 installation via .run file
  - Step 4: CUDA 11.4 Toolkit installation via local installer
- Add libglvnd-devel dependency requirement
- Add text mode (init 3) requirement for driver installation
- Specify exact driver version (470.256.02) and download URL
- Specify exact CUDA installer (11.4.0 with 470.42.01 driver)
- Add note to deselect driver during CUDA installation
- Separate environment configuration:
  - PATH in /etc/profile.d/cuda-11.4.sh
  - Dynamic linker in /etc/ld.so.conf.d/cuda-11-4.conf
- Update all subsequent step numbers (5-7)
- Update all cross-references throughout document
2025-10-28 16:55:38 +08:00

17 KiB

Manual Build Guide for Ollama37

This document provides comprehensive instructions for building Ollama37 from source on various platforms, specifically optimized for Tesla K80 and CUDA Compute Capability 3.7 hardware.

⚠️ Important: Kernel Compatibility Notice

Recent kernel updates in Fedora, Ubuntu, and Rocky Linux have broken compatibility with:

  • NVIDIA Driver 470 (required for Tesla K80 / Compute Capability 3.7)
  • CUDA 11.4 nvcc compiler

Solution: Compile a compatible kernel from source (Linux 5.14.x) before installing NVIDIA drivers.

Recommended Linux Distribution: Rocky Linux 9

  • Rocky Linux 8 has docker-ce compatibility issues
  • Rocky Linux 9 provides better stability and container support

Native Build Overview

For native builds on Rocky Linux 9, you'll need to follow these steps in order:

Installation Steps:

  1. Install GCC 10 - Required for kernel compilation and ollama37 source builds
  2. Compile Custom Kernel (Linux 5.14.x) - Required for NVIDIA 470 compatibility
  3. Install NVIDIA Driver 470 - Tesla K80 GPU driver support
  4. Install CUDA 11.4 Toolkit - CUDA development environment
  5. Install CMake 4.0 - Build system
  6. Install Go 1.25.3 - Go compiler
  7. Compile Ollama37 (Optional - if not using pre-built binaries)

Quick Native Build (after prerequisites):

# Clone repository
git clone https://github.com/dogkeeper886/ollama37
cd ollama37

# If compiling from source (requires GCC 10):
CC=/usr/local/bin/gcc CXX=/usr/local/bin/g++ cmake -B build
CC=/usr/local/bin/gcc CXX=/usr/local/bin/g++ cmake --build build -j$(nproc)
go build -o ollama .

# If using pre-built binary (GCC 10 not required):
# Just download and run the ollama binary

Detailed Installation Guide for Rocky Linux 9

Step 1: GCC 10 Installation

Why Install GCC 10 First?

GCC 10 is required for:

  • Compiling the custom Linux kernel (Step 2)
  • Building ollama37 from source (Step 6)
  • CUDA 11.4 compatibility (CUDA 11.4 nvcc is not compatible with GCC 11.5+)

Rocky Linux 9 ships with GCC 11.5 by default, which is:

  • Incompatible with CUDA 11.4 nvcc compiler
  • Not recommended for kernel compilation with NVIDIA drivers
  • Sufficient for running pre-built binaries (if you skip Steps 2 and 6)

Installation Steps

Complete installation script:

# Install prerequisites
dnf -y groupinstall "Development Tools"

# Download and extract GCC 10 source
cd /usr/local/src
wget https://github.com/gcc-mirror/gcc/archive/refs/heads/releases/gcc-10.zip
unzip gcc-10.zip
cd gcc-releases-gcc-10

# Download GCC prerequisites (GMP, MPFR, MPC, ISL)
contrib/download_prerequisites

# Create build directory and configure
mkdir /usr/local/gcc-10
cd /usr/local/gcc-10
/usr/local/src/gcc-releases-gcc-10/configure --disable-multilib

# Compile and install (1-2 hours depending on CPU)
make -j $(nproc)
make install

Note

: The compilation step make -j $(nproc) will take 1-2 hours depending on your CPU performance. The $(nproc) command uses all available CPU cores to speed up compilation.

Post-Install Configuration:

# Configure dynamic linker to include both system and GCC 10 library paths
cat > /etc/ld.so.conf.d/gcc-10.conf << 'EOF'
/usr/lib64
/usr/local/lib64
EOF

ldconfig

# Update system compiler symlinks to use GCC 10
rm -f /usr/bin/cc
ln -s /usr/local/bin/gcc /usr/bin/cc

Verify Installation:

# Verify GCC 10 installation
gcc --version
# Should output: gcc (GCC) 10.x.x

g++ --version
# Should output: g++ (GCC) 10.x.x

# Verify symlinks are correct
which cc
# Should output: /usr/bin/cc

ls -al /usr/bin/cc
# Should show: /usr/bin/cc -> /usr/local/bin/gcc

Step 2: Kernel Compilation (Required for NVIDIA 470 Compatibility)

Why Compile a Custom Kernel?

Recent kernel updates in Rocky Linux 9, Fedora, and Ubuntu have broken compatibility with:

  • NVIDIA Driver 470 (required for Tesla K80 / Compute Capability 3.7)
  • CUDA 11.4 nvcc compiler

Solution: Use Linux kernel 5.14.x, which maintains stable NVIDIA 470 driver support.

Prerequisites

System Requirements:

  • Rocky Linux 9 (clean installation recommended)
  • Root privileges
  • At least 20GB free disk space
  • Stable internet connection

Install Build Tools:

dnf -y groupinstall "Development Tools"
dnf -y install ncurses-devel

Download Kernel Source

  1. Navigate to source directory:

    cd /usr/src/kernels
    
  2. Download Linux 5.14.x kernel:

    wget https://www.kernel.org/pub/linux/kernel/v5.x/linux-5.14.tar.xz
    

    Note

    : Check kernel.org for the latest 5.14.x stable release.

  3. Extract the archive:

    tar xvf linux-5.14.tar.xz
    cd linux-5.14
    

Configure Kernel

  1. Copy existing kernel configuration:

    # First, check available kernel configurations
    ls /usr/src/kernels
    
    # Copy config from the running kernel (adjust version as needed)
    # Example: cp /usr/src/kernels/5.14.0-570.52.1.el9_6.x86_64/.config .config
    cp /usr/src/kernels/$(uname -r)/.config .config
    
  2. Open menuconfig to adjust settings:

    make menuconfig
    
  3. Required Configuration Changes:

    Navigate and DISABLE the following options:

    a) Disable Module Signature Verification:

    Enable loadable module support
      → [ ] Module signature verification  (press N to disable)
    

    b) Disable Trusted Keys:

    Cryptographic API
      → Certificates for signature checking
        → [ ] Provide system-wide ring of trusted keys  (press N)
        → System trusted keys filename = "" (delete any content, leave empty)
    

    c) Disable BTF Debug Info:

    Kernel hacking
      → Compile-time checks and compiler options
        → [ ] Generate BTF typeinfo  (press N to disable CONFIG_DEBUG_INFO_BTF)
    

    Why disable these?

    • Module signatures: Prevents loading unsigned NVIDIA proprietary driver
    • Trusted keys: Conflicts with out-of-tree driver compilation
    • BTF debug: Can cause build failures and is unnecessary for production use
  4. Save configuration:

    • Press <Save>
    • Confirm default filename .config
    • Press <Exit> to quit menuconfig

Compile Kernel

  1. Compile kernel (using all CPU cores):

    make -j$(nproc)
    

    Estimated time: 30-60 minutes depending on CPU performance

  2. Install kernel modules:

    make modules_install
    
  3. Install kernel:

    make install
    

Reboot and Verify

  1. Reboot system:

    reboot
    
  2. After reboot, verify kernel version:

    uname -r
    # Should output: 5.14.21
    

Troubleshooting Kernel Compilation

Issue: BTF-related build errors

BTF: .tmp_vmlinux.btf: pahole (pahole) is not available
Failed to generate BTF for vmlinux

Solution:

  • Disable CONFIG_DEBUG_INFO_BTF in menuconfig (see step 4c above)

Issue: Module signing key errors

Can't read private key

Solution:

  • Disable CONFIG_MODULE_SIG_ALL and clear CONFIG_SYSTEM_TRUSTED_KEYS in menuconfig
  • Ensure the "System trusted keys filename" field is completely empty

Step 3: NVIDIA Driver 470 Installation

Prerequisites:

  • Rocky Linux 9 system running custom kernel 5.14.x (from Step 2)
  • Root privileges
  • Internet connectivity

Steps:

  1. Update the system:

    dnf -y update
    
  2. Install required dependencies:

    dnf -y install epel-release
    dnf -y install libglvnd-devel.x86_64
    
  3. Switch to text mode (runlevel 3):

    init 3
    

    Note

    : This will exit the graphical interface. You'll need to log in via text console.

  4. Download NVIDIA Driver 470.256.02:

    cd /tmp
    wget https://us.download.nvidia.com/tesla/470.256.02/NVIDIA-Linux-x86_64-470.256.02.run
    
  5. Install NVIDIA Driver:

    chmod +x NVIDIA-Linux-x86_64-470.256.02.run
    sh NVIDIA-Linux-x86_64-470.256.02.run
    

    Installation prompts:

    • Accept the license agreement
    • If asked about DKMS, select "Yes" to register with DKMS
    • If asked about 32-bit compatibility libraries, select based on your needs
    • If asked about X configuration, select "Yes" if you use graphical interface
  6. Reboot to load NVIDIA driver:

    reboot
    

Verification:

# Check driver and GPU
nvidia-smi
# Should show Tesla K80 GPU(s) with driver version 470.256.02

Step 4: CUDA 11.4 Toolkit Installation

Prerequisites:

  • NVIDIA Driver 470 installed and verified (from Step 3)
  • Root privileges

Steps:

  1. Download CUDA 11.4.0 installer:

    cd /tmp
    wget https://developer.download.nvidia.com/compute/cuda/11.4.0/local_installers/cuda_11.4.0_470.42.01_linux.run
    
  2. Run CUDA installer:

    sh cuda_11.4.0_470.42.01_linux.run
    

    Installation prompts:

    • Accept the license agreement
    • IMPORTANT: Deselect "Driver" option (driver already installed in Step 3)
    • Keep selected: CUDA Toolkit, CUDA Samples, CUDA Demo Suite, CUDA Documentation
    • Confirm installation
  3. Set up CUDA Environment Variables:

    Create two configuration files:

    a) PATH configuration in /etc/profile.d/:

    cat > /etc/profile.d/cuda-11.4.sh << 'EOF'
    #!/bin/sh
    # cuda-11.4.sh - CUDA 11.4 PATH configuration for Tesla K80 support
    export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
    EOF
    
    # Apply PATH changes
    source /etc/profile.d/cuda-11.4.sh
    

    b) Dynamic linker configuration:

    The CUDA installer creates /etc/ld.so.conf.d/cuda-11-4.conf automatically with the following content:

    /usr/local/cuda-11.4/lib64
    /usr/local/cuda-11.4/targets/x86_64-linux/lib
    

    If the file doesn't exist or needs to be recreated:

    cat > /etc/ld.so.conf.d/cuda-11-4.conf << 'EOF'
    /usr/local/cuda-11.4/lib64
    /usr/local/cuda-11.4/targets/x86_64-linux/lib
    EOF
    
    # Update dynamic linker cache
    ldconfig
    

Verification:

# Check CUDA compiler
nvcc --version
# Should show: Cuda compilation tools, release 11.4, V11.4.48

# Check driver and CUDA compatibility
nvidia-smi
# Should show Tesla K80 GPU(s) with driver version 470.256.02 and CUDA Version: 11.4

Step 5: CMake 4.0 Installation

  1. Install OpenSSL Development Libraries:

    dnf -y install openssl-devel
    
  2. Download CMake Source Code:

    cd /usr/local/src
    wget https://github.com/Kitware/CMake/releases/download/v4.0.0/cmake-4.0.0.tar.gz
    
  3. Extract the Archive:

    tar xvf cmake-4.0.0.tar.gz
    
  4. Create Installation Directory:

    mkdir /usr/local/cmake-4
    
  5. Configure CMake:

    cd /usr/local/cmake-4
    /usr/local/src/cmake-4.0.0/configure
    
  6. Compile CMake:

    make -j $(nproc)
    
  7. Install CMake:

    make install
    
  8. Verify Installation:

    cmake --version
    # Should output: cmake version 4.0.0
    

Step 6: Go 1.25.3 Installation

  1. Download Go Distribution:

    cd /usr/local
    wget https://go.dev/dl/go1.25.3.linux-amd64.tar.gz
    
  2. Extract the Archive:

    tar xvf go1.25.3.linux-amd64.tar.gz
    
  3. Post Install Configuration:

    cat > /etc/profile.d/go.conf << 'EOF'
    #!/bin/sh
    # go.conf - Go environment configuration
    export PATH=/usr/local/go/bin${PATH:+:${PATH}}
    EOF
    
    # Apply the configuration
    source /etc/profile.d/go.conf
    
  4. Verify Installation:

    go version
    # Should output: go version go1.25.3 linux/amd64
    

Step 7: Ollama37 Compilation (Optional - For Custom Builds)

Prerequisites: All components installed as per the guides above:

  • GCC 10 (from Step 1)
  • Rocky Linux 9 with custom kernel 5.14.x (from Step 2)
  • NVIDIA Driver 470 (from Step 3)
  • CUDA Toolkit 11.4 (from Step 4)
  • CMake 4.0 (from Step 5)
  • Go 1.25.3 (from Step 6)
  • Git

Compilation Steps:

  1. Navigate to Build Directory:

    cd /usr/local/src
    
  2. Clone the Repository:

    git clone https://github.com/dogkeeper886/ollama37
    cd ollama37
    
  3. CMake Configuration: Set compiler variables and configure the build system:

    CC=/usr/local/bin/gcc CXX=/usr/local/bin/g++ cmake -B build
    
  4. CMake Build: Compile the C++ components (parallel build):

    CC=/usr/local/bin/gcc CXX=/usr/local/bin/g++ cmake --build build -j$(nproc)
    

    Note: -j$(nproc) enables parallel compilation using all available CPU cores. You can specify a number like -j4 to limit the number of parallel jobs.

  5. Go Build: Compile the Go components:

    go build -o ollama .
    
  6. Verification:

    ./ollama --version
    
  7. Optional: Install System-Wide:

    cp ollama /usr/local/bin/
    cp -r lib/ollama /usr/local/lib/
    

Tesla K80 Specific Optimizations

The Ollama37 build includes several Tesla K80-specific optimizations:

CUDA Architecture Support

  • CMake Configuration: CMAKE_CUDA_ARCHITECTURES "37;50;61;70;75;80"
  • Build Files: Located in ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt

CUDA 11 Compatibility

  • Uses CUDA 11 toolchain (CUDA 12 dropped Compute Capability 3.7 support)
  • Environment variables configured for CUDA 11.4 paths
  • Driver version 470 for maximum compatibility

Performance Tuning

  • Optimized memory management for Tesla K80's 12GB VRAM
  • Kernel optimizations for Kepler architecture
  • Reduced precision operations where appropriate
  • Enhanced VMM pool with granularity alignment
  • Progressive memory allocation fallback (4GB → 2GB → 1GB → 512MB)

Troubleshooting

NVIDIA Driver Issues

Issue: nvidia-smi shows "Failed to initialize NVML"

Solution:

# Check if driver is loaded
lsmod | grep nvidia

# If not loaded, load manually
modprobe nvidia

# Check dmesg for errors
dmesg | grep -i nvidia

Issue: Driver loads but CUDA version mismatch

Solution:

# Check CUDA version
nvcc --version

# Check driver CUDA support
nvidia-smi

# Ensure PATH points to CUDA 11.4
echo $PATH | grep cuda-11.4

CUDA Compilation Issues

Issue: nvcc not found

Solution:

# Check if CUDA is in PATH
which nvcc

# If not, source environment
source /etc/profile.d/cuda-11.4.sh

# Verify
nvcc --version

Issue: "nvcc fatal: Unsupported gpu architecture 'compute_37'"

Solution: This error means you're using CUDA 12 instead of CUDA 11.4. Ensure:

# Check CUDA version
nvcc --version
# Must show CUDA 11.4

# If wrong version, check PATH
echo $PATH
# Should include /usr/local/cuda-11.4/bin BEFORE any other CUDA paths

GCC Version Issues

Issue: CMake can't find GCC 10

Solution:

# Check GCC version
/usr/local/bin/gcc --version
# Should show GCC 10.x

# If build fails, explicitly set CC and CXX
export CC=/usr/local/bin/gcc
export CXX=/usr/local/bin/g++

Issue: CUDA compilation fails with GCC 11 errors

Solution:

# CUDA 11.4 is not compatible with GCC 11+
# You MUST use GCC 10 for compilation
# Ensure you've installed GCC 10 (Step 1)

# Verify compiler paths
which gcc  # Should point to /usr/local/bin/gcc
gcc --version  # Should show 10.x

Memory Issues

Issue: Out of memory during model loading

Solution:

  • Tesla K80 has 12GB VRAM per GPU
  • Use quantized models (Q4_0, Q8_0) for better memory efficiency
  • Reduce context length: ollama run model --num-ctx 2048
  • Monitor GPU memory: watch -n 1 nvidia-smi

Build Verification

After successful compilation, verify Tesla K80 support:

# Check if ollama detects your GPU
./ollama serve &

# Pull a small model
./ollama pull llama3.2:3b

# Test inference
./ollama run llama3.2:3b "Hello Tesla K80!"

# Monitor GPU utilization
watch -n 1 nvidia-smi

Performance Optimization Tips

  1. Model Selection: Use quantized models (Q4_0, Q8_0) for better performance on Tesla K80
  2. Memory Management: Monitor VRAM usage and adjust context sizes accordingly
  3. Temperature Control: Ensure adequate cooling for sustained workloads
  4. Power Management: Tesla K80 requires proper power delivery (225W per GPU)
  5. Multi-GPU: For dual K80 setups, use CUDA_VISIBLE_DEVICES=0,1 to leverage both GPUs

Summary: Installation Paths

Path 1: Pre-built Binary (Easier)

  1. Skip GCC 10 installation (not needed for pre-built binaries)
  2. Compile custom kernel 5.14.x
  3. Install NVIDIA Driver 470
  4. Install CUDA 11.4 Toolkit
  5. Install CMake 4.0
  6. Install Go 1.25.3
  7. Download and run pre-built ollama37 binary

Path 2: Compile from Source (Advanced - Requires All Steps)

  1. Install GCC 10 (required for kernel and ollama37 compilation)
  2. Compile custom kernel 5.14.x (uses GCC 10)
  3. Install NVIDIA Driver 470
  4. Install CUDA 11.4 Toolkit
  5. Install CMake 4.0
  6. Install Go 1.25.3
  7. Compile ollama37 from source (uses GCC 10)

Choose the path that best fits your requirements and technical expertise.