Files
ollama37/docs/integrations/jetbrains.mdx
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

48 lines
1.3 KiB
Plaintext

---
title: JetBrains
---
<Note>This example uses **IntelliJ**; same steps apply to other JetBrains IDEs (e.g., PyCharm).</Note>
## Install
Install [IntelliJ](https://www.jetbrains.com/idea/).
## Usage with Ollama
<Note>
To use **Ollama**, you will need a [JetBrains AI Subscription](https://www.jetbrains.com/ai-ides/buy/?section=personal&billing=yearly).
</Note>
1. In Intellij, click the **chat icon** located in the right sidebar
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/intellij-chat-sidebar.png"
alt="Intellij Sidebar Chat"
width="50%"
/>
</div>
2. Select the **current model** in the sidebar, then click **Set up Local Models**
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/intellij-current-model.png"
alt="Intellij model bottom right corner"
width="50%"
/>
</div>
3. Under **Third Party AI Providers**, choose **Ollama**
4. Confirm the **Host URL** is `http://localhost:11434`, then click **Ok**
5. Once connected, select a model under **Local models by Ollama**
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/intellij-local-models.png"
alt="Zed star icon in bottom right corner"
width="50%"
/>
</div>