Fix gpt-oss model architecture to match GGUF tensor format

The gpt-oss model architecture code expected fused tensors (attn_qkv,
ffn_gate_up_exps) but the actual GGUF files contain separate tensors
(attn_q/k/v, ffn_gate_exps/up_exps), causing nil pointer panics during
model loading.

Changes:
- model/models/gptoss/model.go: Updated AttentionBlock to use separate
  Query/Key/Value fields instead of fused QKV, modified Forward() to
  compute projections separately
- model/models/gptoss/model.go: Updated MLPBlock to use separate Gate/Up
  fields instead of fused GateUp, simplified Forward() logic
- fs/ggml/type.go: Reorganized MXFP4 tensor type constant ordering
- ml/backend/ggml/ggml/include/ggml.h: Moved GGML_TYPE_MXFP4 to end of
  enum to match GGUF file format specification
- ml/backend/ggml/ggml/src/ggml.c: Updated type name array to match
  reordered enum
- CLAUDE.md: Documented gpt-oss model compatibility fix

Result: gpt-oss:20b model now loads and runs successfully on Tesla K80,
all 25 layers offload to GPU correctly.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-10-29 23:34:03 +08:00
parent 241a03402e
commit d04ea50ced
5 changed files with 91 additions and 87 deletions

View File

@@ -187,45 +187,42 @@ func (ftype FileType) ToTensorType() TensorType {
type TensorType uint32
const (
TensorTypeF32 TensorType = iota
TensorTypeF16
TensorTypeQ4_0
TensorTypeQ4_1
TensorTypeMXFP4 // Formerly unused tensorTypeQ4_2
tensorTypeQ4_3 // unused by GGML
TensorTypeQ5_0
TensorTypeQ5_1
TensorTypeQ8_0
TensorTypeQ8_1
TensorTypeQ2_K
TensorTypeQ3_K
TensorTypeQ4_K
TensorTypeQ5_K
TensorTypeQ6_K
TensorTypeQ8_K
tensorTypeIQ2_XXS // not supported by ollama
tensorTypeIQ2_XS // not supported by ollama
tensorTypeIQ3_XXS // not supported by ollama
tensorTypeIQ1_S // not supported by ollama
tensorTypeIQ4_NL // not supported by ollama
tensorTypeIQ3_S // not supported by ollama
tensorTypeIQ2_S // not supported by ollama
tensorTypeIQ4_XS // not supported by ollama
TensorTypeI8
TensorTypeI16
TensorTypeI32
TensorTypeI64
TensorTypeF64
tensorTypeIQ1_M // not supported by ollama
TensorTypeBF16
tensorTypeQ4_0_4_4 // unused by GGML
tensorTypeQ4_0_4_8 // unused by GGML
tensorTypeQ4_0_8_8 // unused by GGML
tensorTypeTQ1_0 // not supported by ollama
tensorTypeTQ2_0 // not supported by ollama
tensorTypeIQ4_NL_4_4 // unused by GGML
tensorTypeIQ4_NL_4_8 // unused by GGML
tensorTypeIQ4_NL_8_8 // unused by GGML
TensorTypeF32 TensorType = 0
TensorTypeF16 = 1
TensorTypeQ4_0 = 2
TensorTypeQ4_1 = 3
// 4 = Q4_2 removed
// 5 = Q4_3 removed
TensorTypeQ5_0 = 6
TensorTypeQ5_1 = 7
TensorTypeQ8_0 = 8
TensorTypeQ8_1 = 9
TensorTypeQ2_K = 10
TensorTypeQ3_K = 11
TensorTypeQ4_K = 12
TensorTypeQ5_K = 13
TensorTypeQ6_K = 14
TensorTypeQ8_K = 15
tensorTypeIQ2_XXS = 16 // not supported by ollama
tensorTypeIQ2_XS = 17 // not supported by ollama
tensorTypeIQ3_XXS = 18 // not supported by ollama
tensorTypeIQ1_S = 19 // not supported by ollama
tensorTypeIQ4_NL = 20 // not supported by ollama
tensorTypeIQ3_S = 21 // not supported by ollama
tensorTypeIQ2_S = 22 // not supported by ollama
tensorTypeIQ4_XS = 23 // not supported by ollama
TensorTypeI8 = 24
TensorTypeI16 = 25
TensorTypeI32 = 26
TensorTypeI64 = 27
TensorTypeF64 = 28
tensorTypeIQ1_M = 29 // not supported by ollama
TensorTypeBF16 = 30
// 31-33 = Q4_0 variants removed
tensorTypeTQ1_0 = 34 // not supported by ollama
tensorTypeTQ2_0 = 35 // not supported by ollama
// 36-38 = IQ4_NL variants removed
TensorTypeMXFP4 = 39
)
// ParseFileType parses the provided GGUF file type