This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.
## Key Changes
### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility
### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)
### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)
### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI
### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling
### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts
## Rationale
This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI
We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
The gpt-oss model architecture code expected fused tensors (attn_qkv,
ffn_gate_up_exps) but the actual GGUF files contain separate tensors
(attn_q/k/v, ffn_gate_exps/up_exps), causing nil pointer panics during
model loading.
Changes:
- model/models/gptoss/model.go: Updated AttentionBlock to use separate
Query/Key/Value fields instead of fused QKV, modified Forward() to
compute projections separately
- model/models/gptoss/model.go: Updated MLPBlock to use separate Gate/Up
fields instead of fused GateUp, simplified Forward() logic
- fs/ggml/type.go: Reorganized MXFP4 tensor type constant ordering
- ml/backend/ggml/ggml/include/ggml.h: Moved GGML_TYPE_MXFP4 to end of
enum to match GGUF file format specification
- ml/backend/ggml/ggml/src/ggml.c: Updated type name array to match
reordered enum
- CLAUDE.md: Documented gpt-oss model compatibility fix
Result: gpt-oss:20b model now loads and runs successfully on Tesla K80,
all 25 layers offload to GPU correctly.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Added support for new gpt-oss model from upstream
- Preserved CUDA Compute Capability 3.7 (Tesla K80) support
- Kept CUDA 11 configuration alongside CUDA 12
- Maintained all documentation specific to ollama37 fork
- Integrated new tool parsing improvements
- Added new backend methods and patches from upstream
* bf16
* tests
* gpt-oss
* enable gptoss for engine
* rough estimate
* convert to mxfp4
* handle safetensors U8
* clamp glu/linear
* update tokenizer
* MXFP4 support
This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.
* Unit tests for MXFP4 support
This exercises various operations and shapes on both CPU and GPU (if detected
on the system)
* cuda graph
* unit test adjustments
* cuda: optimize memory access
Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4
* mac: fix crash on old macos versions
cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors. Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.
* server: Minimum context length for gptoss
This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.
* ggml: Multiply by numParallel for gptoss sliding window
When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.
* gpt-oss integration
includes harmony parser and thinking levels, etc.
* fix sync
* fix tests
* fix lint
---------
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
* Enable CUDA Graphs for gemma3n.
Similar to
https://github.com/ggml-org/llama.cpp/pull/14741,
though ollama has a slightly different model graph
than llama.cpp which requires different workaround
checks.
* Remove residual check by reshaping differently in gemma3n model
This should make the heuristics more robust
- Add Gemma3n model support with text generation capabilities
- Add new CUDA mean operations for improved performance
- Add macOS documentation and performance tests
- Update LLAMA patches for ROCm/CUDA compatibility
- Fix various model conversion and processing issues
- Update CI workflows and build configurations
- Add library model tests and Shakespeare test data
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Both `/api/generate` and `/api/chat` now accept a `"think"`
option that allows specifying whether thinking mode should be on or
not
- Templates get passed this new option so, e.g., qwen3's template can
put `/think` or `/no_think` in the system prompt depending on the
value of the setting
- Models' thinking support is inferred by inspecting model templates.
The prefix and suffix the parser uses to identify thinking support is
also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
existing API consumers. If the `"think"` option is not specified, the
behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
or `--think=false` to control thinking, or during an interactive
session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
it easy to use thinking in scripting scenarios like
`ollama run qwen3 --think --hidethinking "my question here"` where you
just want to see the answer but still want the benefits of thinking
models
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.
In many cases, the caller can't really handle the error and panics.
Empty and Zeros directly panic if they can't allocate memory.
This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
* fix mllama convert
- transform attn_gate and ffn_gate
- swap attention heads for vision models
* fix mllama
the mlp gate which was applied in the wrong place
setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.
assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.
not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
* get eos_token_id from generation_config.json
* refactor
* include both ids and strings in trace
* comments
* remove special case for gemma3 special vocab (#10743)
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.
However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.
This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
Currently, the KV cache and graph are lazily allocated as needed.
The cache is fully allocated on first use of the corresponding
layer whereas the graph grows with the size of the context.
This can be an issue if another application allocates more VRAM
after we do our calculations - Ollama will crash in the middle of
inference. If we instead allocate the maximum needed memory at
startup of the runner, we will either succeed or fail at that point
rather than at some surprising time in the future.
Currently, this only generates a worst case batch for text, which
means that vision models may get a partial allocation and continue
to lazily allocate the rest.
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
Rather than directly giving the input data to models, we can
pass a tensor instead. In the short term, this saves some duplicated
code.
Longer term, we will want to overlap setting up the next batch with
processing of the current one. In this case, we will only have the
shape of tensor but it will not be loaded with data at the time of
graph generation. By passing only a tensor to models now, we set up
this possibility and prevent them from relying on data that they won't
have in the future.
Although the same could be done for Positions and Outputs, in some
cases we either need the raw input data or don't use them at all.
Therefore, for now we leave them as they are and allow models to
convert them to tensors as needed.
Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.
This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.
Fixes#9697