Files
ollama37/docker/README.md
Shang Chieh Tseng b5dac79d2c Update README.md
2025-11-13 18:14:16 +08:00

549 lines
12 KiB
Markdown

# Ollama37 Docker Build System
**Two-stage Docker build for Ollama with CUDA 11.4 and Compute Capability 3.7 support (Tesla K80)**
## Overview
This Docker build system uses a two-stage architecture to build and run Ollama with Tesla K80 (compute capability 3.7) support:
1. **Builder Image** (`builder/Dockerfile`) - Base environment with build tools
- Rocky Linux 8
- CUDA 11.4 toolkit (required for Tesla K80)
- GCC 10 (built from source, required by CUDA 11.4)
- CMake 4.0 (built from source)
- Go 1.25.3
2. **Runtime Image** (`runtime/Dockerfile`) - Two-stage build process
- **Stage 1 (compile)**: Clone source → Configure CMake → Build C/C++/CUDA → Build Go binary
- **Stage 2 (runtime)**: Copy artifacts → Setup runtime environment
The runtime uses the builder image as its base to ensure library path compatibility between build and runtime environments.
## Prerequisites
- Docker with NVIDIA Container Runtime
- Docker Compose
- NVIDIA GPU drivers (470+ for Tesla K80)
- Verify GPU access:
```bash
docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
```
## Quick Start
### 1. Build Images
```bash
cd /home/jack/Documents/ollama37/docker
make build
```
This will:
1. Build the builder image (if not present) - **~90 minutes first time**
2. Build the runtime image - **~10 minutes**
**First-time build:** ~100 minutes total (includes building GCC 10 and CMake 4 from source)
**Subsequent builds:** ~10 minutes (builder image is cached)
### 2. Run with Docker Compose (Recommended)
```bash
docker compose up -d
```
Check logs:
```bash
docker compose logs -f
```
Stop the server:
```bash
docker compose down
```
### 3. Run Manually
```bash
docker run -d \
--name ollama37 \
--runtime=nvidia \
--gpus all \
-p 11434:11434 \
-v ollama-data:/root/.ollama \
ollama37:latest
```
## Usage
### Using the API
```bash
# List models
curl http://localhost:11434/api/tags
# Pull a model
curl http://localhost:11434/api/pull -d '{"name": "gemma3:4b"}'
# Run inference
curl http://localhost:11434/api/generate -d '{
"model": "gemma3:4b",
"prompt": "Why is the sky blue?",
"stream": false
}'
```
### Using the CLI
```bash
# List models
docker exec ollama37 ollama list
# Pull a model
docker exec ollama37 ollama pull gemma3:4b
# Run a model
docker exec ollama37 ollama run gemma3:4b "Hello!"
```
## Architecture
### Build System Components
```
docker/
├── builder/
│ └── Dockerfile # Base image: CUDA 11.4, GCC 10, CMake 4, Go 1.25.3
├── runtime/
│ └── Dockerfile # Two-stage: compile ollama37, package runtime
├── Makefile # Build orchestration (images only)
├── docker-compose.yml # Runtime orchestration
└── README.md # This file
```
### Two-Stage Build Process
#### Stage 1: Builder Image (`builder/Dockerfile`)
**Purpose**: Provide consistent build environment
**Contents:**
- Rocky Linux 8 base
- CUDA 11.4 toolkit (compilation only, no driver)
- GCC 10 from source (~60 min build time)
- CMake 4.0 from source (~8 min build time)
- Go 1.25.3 binary
- All build dependencies
**Build time:** ~90 minutes (first time), cached thereafter
**Image size:** ~15GB
#### Stage 2: Runtime Image (`runtime/Dockerfile`)
**Stage 2.1 - Compile** (FROM ollama37-builder)
1. Clone ollama37 source from GitHub
2. Configure with CMake ("CUDA 11" preset for compute 3.7)
3. Build C/C++/CUDA libraries
4. Build Go binary
**Stage 2.2 - Runtime** (FROM ollama37-builder)
1. Copy entire source tree (includes compiled artifacts)
2. Copy binary to /usr/local/bin/ollama
3. Setup LD_LIBRARY_PATH for runtime libraries
4. Configure server, expose ports, setup volumes
**Build time:** ~10 minutes
**Image size:** ~18GB (includes build environment + compiled Ollama)
### Why Both Stages Use Builder Base?
**Problem**: Compiled binaries have hardcoded library paths (via rpath/LD_LIBRARY_PATH)
**Solution**: Use identical base images for compile and runtime stages
**Benefits:**
- ✅ Library paths match between build and runtime
- ✅ All GCC 10 runtime libraries present
- ✅ All CUDA libraries at expected paths
- ✅ No complex artifact extraction/copying
- ✅ Guaranteed compatibility
**Trade-off:** Larger runtime image (~18GB) vs complexity and reliability issues
### Alternative: Single-Stage Build
See `Dockerfile.single-stage.archived` for the original single-stage design that inspired this architecture.
## Build Commands
### Using the Makefile
```bash
# Build both builder and runtime images
make build
# Build only builder image
make build-builder
# Build only runtime image (will auto-build builder if needed)
make build-runtime
# Remove all images
make clean
# Show help
make help
```
### Direct Docker Commands
```bash
# Build builder image
docker build -f builder/Dockerfile -t ollama37-builder:latest builder/
# Build runtime image
docker build -f runtime/Dockerfile -t ollama37:latest .
```
## Runtime Management
### Using Docker Compose (Recommended)
```bash
# Start server
docker compose up -d
# View logs (live tail)
docker compose logs -f
# Stop server
docker compose down
# Stop and remove volumes
docker compose down -v
# Restart server
docker compose restart
```
### Manual Docker Commands
```bash
# Start container
docker run -d \
--name ollama37 \
--runtime=nvidia \
--gpus all \
-p 11434:11434 \
-v ollama-data:/root/.ollama \
ollama37:latest
# View logs
docker logs -f ollama37
# Stop container
docker stop ollama37
docker rm ollama37
# Shell access
docker exec -it ollama37 bash
```
## Configuration
### Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `OLLAMA_HOST` | `0.0.0.0:11434` | Server listen address |
| `LD_LIBRARY_PATH` | `/usr/local/src/ollama37/build/lib/ollama:/usr/local/lib64:/usr/local/cuda-11.4/lib64:/usr/lib64` | Library search path |
| `NVIDIA_VISIBLE_DEVICES` | `all` | Which GPUs to use |
| `NVIDIA_DRIVER_CAPABILITIES` | `compute,utility` | GPU capabilities |
| `OLLAMA_DEBUG` | (unset) | Enable verbose Ollama logging |
| `GGML_CUDA_DEBUG` | (unset) | Enable CUDA/CUBLAS debug logging |
### Volume Mounts
- `/root/.ollama` - Model storage (use Docker volume `ollama-data`)
### Customizing docker-compose.yml
```yaml
# Change port
ports:
- "11435:11434" # Host:Container
# Use specific GPU
environment:
- NVIDIA_VISIBLE_DEVICES=0 # Use GPU 0 only
# Enable debug logging
environment:
- OLLAMA_DEBUG=1
- GGML_CUDA_DEBUG=1
```
## GPU Support
### Supported Compute Capabilities
- **3.7** - Tesla K80 (primary target)
- **5.0-5.2** - Maxwell (GTX 900 series)
- **6.0-6.1** - Pascal (GTX 10 series)
- **7.0-7.5** - Volta, Turing (RTX 20 series)
- **8.0-8.6** - Ampere (RTX 30 series)
### Tesla K80 Recommendations
**VRAM:** 12GB per GPU (24GB for dual-GPU K80)
**Model sizes:**
- Small (1-4B): Full precision or Q8 quantization
- Medium (7-8B): Q4_K_M quantization
- Large (13B+): Q4_0 quantization or multi-GPU
**Tested models:**
- ✅ gemma3:4b
- ✅ gpt-oss
- ✅ deepseek-r1
**Multi-GPU:**
```bash
# Use all GPUs
docker run --gpus all ...
# Use specific GPU
docker run --gpus '"device=0"' ...
# Use multiple specific GPUs
docker run --gpus '"device=0,1"' ...
```
## Troubleshooting
### GPU not detected
```bash
# Check GPU visibility in container
docker exec ollama37 nvidia-smi
# Check CUDA libraries
docker exec ollama37 ldconfig -p | grep cuda
# Check NVIDIA runtime
docker info | grep -i runtime
```
### NVIDIA UVM Device Files Missing
**Symptom:** `nvidia-smi` works inside the container, but Ollama reports **0 GPUs detected** (CUDA runtime cannot find GPUs).
**Root Cause:**
The nvidia-uvm device files were missing on the host system.
While the `nvidia-uvm` kernel module was loaded, the device files `/dev/nvidia-uvm` and `/dev/nvidia-uvm-tools` were not created.
These device files are critical for CUDA runtime:
- `nvidia-smi` only needs the basic driver (works without UVM)
- **CUDA applications require UVM** for GPU memory allocation and kernel execution
- Without UVM devices: CUDA reports 0 GPUs even though they exist
**The Fix:**
Run this single command on the **host system** (not inside the container):
```bash
nvidia-modprobe -u -c=0
```
This creates the required device files:
- `/dev/nvidia-uvm` (major 239, minor 0)
- `/dev/nvidia-uvm-tools` (major 239, minor 1)
Then restart the container:
```bash
docker compose restart
```
**Result:** GPUs now properly detected by CUDA runtime.
**Verify the fix:**
```bash
# Check UVM device files exist on host
ls -l /dev/nvidia-uvm*
# Check Ollama logs for GPU detection
docker compose logs | grep -i gpu
# You should see output like:
# ollama37 | time=... level=INFO msg="Nvidia GPU detected" name="Tesla K80" vram=11441 MiB
# ollama37 | time=... level=INFO msg="Nvidia GPU detected" name="Tesla K80" vram=11441 MiB
```
### Model fails to load
```bash
# Check logs with CUDA debug
docker run --rm --runtime=nvidia --gpus all \
-e OLLAMA_DEBUG=1 \
-e GGML_CUDA_DEBUG=1 \
-p 11434:11434 \
ollama37:latest
# Check library paths
docker exec ollama37 bash -c 'echo $LD_LIBRARY_PATH'
# Verify CUBLAS functions
docker exec ollama37 bash -c 'ldd /usr/local/bin/ollama | grep cublas'
```
### Build fails with "out of memory"
```bash
# Edit runtime/Dockerfile line for cmake build
# Change: cmake --build build -j$(nproc)
# To: cmake --build build -j2
# Or set Docker memory limit
docker build --memory=8g ...
```
### Port already in use
```bash
# Find process using port 11434
sudo lsof -i :11434
# Kill the process or change port in docker-compose.yml
ports:
- "11435:11434"
```
### Build cache issues
```bash
# Rebuild runtime image without cache
docker build --no-cache -f runtime/Dockerfile -t ollama37:latest .
# Rebuild builder image without cache
docker build --no-cache -f builder/Dockerfile -t ollama37-builder:latest builder/
# Remove all images and rebuild
make clean
make build
```
## Rebuilding
### Rebuild with latest code
```bash
# Runtime Dockerfile clones from GitHub, so rebuild to get latest
make build-runtime
# Restart container
docker compose restart
```
### Rebuild everything from scratch
```bash
# Stop and remove containers
docker compose down -v
# Remove images
make clean
# Rebuild all
make build
# Start fresh
docker compose up -d
```
### Rebuild only builder (rare)
```bash
# Only needed if you change CUDA/GCC/CMake/Go versions
make clean
make build-builder
make build-runtime
```
## Development
### Modifying the build
1. **Change build tools** - Edit `builder/Dockerfile`
2. **Change Ollama build process** - Edit `runtime/Dockerfile`
3. **Change build orchestration** - Edit `Makefile`
4. **Change runtime config** - Edit `docker-compose.yml`
### Testing changes
```bash
# Build with your changes
make build
# Run and test
docker compose up -d
docker compose logs -f
# If issues, check inside container
docker exec -it ollama37 bash
```
### Shell access for debugging
```bash
# Enter running container
docker exec -it ollama37 bash
# Check GPU
nvidia-smi
# Check libraries
ldd /usr/local/bin/ollama
ldconfig -p | grep -E "cuda|cublas"
# Test binary
/usr/local/bin/ollama --version
```
## Image Sizes
| Image | Size | Contents |
|-------|------|----------|
| `ollama37-builder:latest` | ~15GB | CUDA, GCC, CMake, Go, build deps |
| `ollama37:latest` | ~18GB | Builder + Ollama binary + libraries |
**Note**: Large size ensures all runtime dependencies are present and properly linked.
## Build Times
| Task | First Build | Cached Build |
|------|-------------|--------------|
| Builder image | ~90 min | <1 min |
| Runtime image | ~10 min | ~10 min |
| **Total** | **~100 min** | **~10 min** |
**Breakdown (first build):**
- GCC 10: ~60 min
- CMake 4: ~8 min
- CUDA toolkit: ~10 min
- Go install: ~1 min
- Ollama build: ~10 min
## Documentation
- **[../CLAUDE.md](../CLAUDE.md)** - Project goals, implementation details, and technical notes
- **[Upstream Ollama](https://github.com/ollama/ollama)** - Original Ollama project
- **[dogkeeper886/ollama37](https://github.com/dogkeeper886/ollama37)** - This fork with K80 support
## License
MIT (same as upstream Ollama)