mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-09 23:37:06 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
128 lines
3.3 KiB
Go
128 lines
3.3 KiB
Go
package server
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"log/slog"
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/llm"
|
|
"github.com/ollama/ollama/model/renderers"
|
|
"github.com/ollama/ollama/template"
|
|
)
|
|
|
|
type tokenizeFunc func(context.Context, string) ([]int, error)
|
|
|
|
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
|
|
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
|
|
// latest message and 2) system messages
|
|
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message, tools []api.Tool, think *api.ThinkValue, truncate bool) (prompt string, images []llm.ImageData, _ error) {
|
|
var system []api.Message
|
|
|
|
// TODO: Ideally we would compute this from the projector metadata but some pieces are implementation dependent
|
|
// Clip images are represented as 768 tokens, each an embedding
|
|
imageNumTokens := 768
|
|
|
|
n := len(msgs) - 1
|
|
// in reverse, find all messages that fit into context window
|
|
for i := n; i >= 0; i-- {
|
|
// always include the last message
|
|
if i == n {
|
|
continue
|
|
}
|
|
|
|
system = make([]api.Message, 0)
|
|
for j := range i {
|
|
if msgs[j].Role == "system" {
|
|
system = append(system, msgs[j])
|
|
}
|
|
}
|
|
|
|
p, err := renderPrompt(m, append(system, msgs[i:]...), tools, think)
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
s, err := tokenize(ctx, p)
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
ctxLen := len(s)
|
|
if m.ProjectorPaths != nil {
|
|
for _, m := range msgs[i:] {
|
|
ctxLen += imageNumTokens * len(m.Images)
|
|
}
|
|
}
|
|
|
|
if truncate && ctxLen > opts.NumCtx {
|
|
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
|
|
break
|
|
} else {
|
|
n = i
|
|
}
|
|
}
|
|
|
|
currMsgIdx := n
|
|
|
|
for cnt, msg := range msgs[currMsgIdx:] {
|
|
if slices.Contains(m.Config.ModelFamilies, "mllama") && len(msg.Images) > 1 {
|
|
return "", nil, errors.New("this model only supports one image while more than one image requested")
|
|
}
|
|
|
|
var prefix string
|
|
prompt := msg.Content
|
|
|
|
for _, i := range msg.Images {
|
|
imgData := llm.ImageData{
|
|
ID: len(images),
|
|
Data: i,
|
|
}
|
|
|
|
imgTag := fmt.Sprintf("[img-%d]", imgData.ID)
|
|
if !strings.Contains(prompt, "[img]") {
|
|
prefix += imgTag
|
|
} else {
|
|
prompt = strings.Replace(prompt, "[img]", imgTag, 1)
|
|
}
|
|
|
|
images = append(images, imgData)
|
|
}
|
|
msgs[currMsgIdx+cnt].Content = prefix + prompt
|
|
}
|
|
|
|
// truncate any messages that do not fit into the context window
|
|
p, err := renderPrompt(m, append(system, msgs[currMsgIdx:]...), tools, think)
|
|
if err != nil {
|
|
return "", nil, err
|
|
}
|
|
|
|
return p, images, nil
|
|
}
|
|
|
|
func renderPrompt(m *Model, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (string, error) {
|
|
if m.Config.Renderer != "" {
|
|
rendered, err := renderers.RenderWithRenderer(m.Config.Renderer, msgs, tools, think)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return rendered, nil
|
|
}
|
|
|
|
var b bytes.Buffer
|
|
thinkVal := false
|
|
thinkLevel := ""
|
|
if think != nil {
|
|
thinkVal = think.Bool()
|
|
thinkLevel = think.String()
|
|
}
|
|
if err := m.Template.Execute(&b, template.Values{Messages: msgs, Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
|
|
return "", err
|
|
}
|
|
return b.String(), nil
|
|
}
|