mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 11:47:07 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
45 lines
1.2 KiB
Plaintext
45 lines
1.2 KiB
Plaintext
---
|
|
title: Xcode
|
|
---
|
|
|
|
## Install
|
|
|
|
Install [XCode](https://developer.apple.com/xcode/)
|
|
|
|
|
|
## Usage with Ollama
|
|
<Note> Ensure Apple Intelligence is setup and the latest XCode version is v26.0 </Note>
|
|
|
|
1. Click **XCode** in top left corner > **Settings**
|
|
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
|
<img
|
|
src="/images/xcode-intelligence-window.png"
|
|
alt="Xcode Intelligence window"
|
|
width="50%"
|
|
/>
|
|
</div>
|
|
|
|
2. Select **Locally Hosted**, enter port **11434** and click **Add**
|
|
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
|
<img
|
|
src="/images/xcode-locally-hosted.png"
|
|
alt="Xcode settings"
|
|
width="50%"
|
|
/>
|
|
</div>
|
|
|
|
3. Select the **star icon** on the top left corner and click the **dropdown**
|
|
<div style={{ display: 'flex', justifyContent: 'center' }}>
|
|
<img
|
|
src="/images/xcode-chat-icon.png"
|
|
alt="Xcode settings"
|
|
width="50%"
|
|
/>
|
|
</div>
|
|
4. Click **My Account** and select your desired model
|
|
|
|
|
|
## Connecting to ollama.com directly
|
|
1. Create an [API key](https://ollama.com/settings/keys) from ollama.com
|
|
2. Select **Internet Hosted** and enter URL as `https://ollama.com`
|
|
3. Enter your **Ollama API Key** and click **Add** |