mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 03:37:09 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
152 lines
4.5 KiB
Go
152 lines
4.5 KiB
Go
package gemma3
|
|
|
|
import (
|
|
"bytes"
|
|
"image"
|
|
"math"
|
|
"slices"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.SentencePiece
|
|
|
|
*VisionModel `gguf:"v"`
|
|
*TextModel
|
|
|
|
*MultiModalProjector `gguf:"mm"`
|
|
|
|
ImageProcessor
|
|
}
|
|
|
|
var _ model.MultimodalProcessor = (*Model)(nil)
|
|
|
|
type MultiModalProjector struct {
|
|
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
|
|
InputProjection *nn.Linear `gguf:"mm_input_projection"`
|
|
|
|
tokensPerImage int
|
|
}
|
|
|
|
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
|
|
l := visionOutputs.Dim(0)
|
|
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
patchesPerImage := imageSize / patchSize
|
|
visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)
|
|
|
|
kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
|
|
visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
|
|
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
|
|
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
|
|
|
|
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
|
|
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
|
|
return visionOutputs
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
m := Model{
|
|
SentencePiece: model.NewSentencePiece(
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{
|
|
int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
|
|
},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
},
|
|
),
|
|
ImageProcessor: newImageProcessor(c),
|
|
VisionModel: newVisionModel(c),
|
|
TextModel: newTextModel(c),
|
|
MultiModalProjector: &MultiModalProjector{
|
|
tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
|
|
},
|
|
}
|
|
|
|
slidingWindowLen := int32(c.Uint("attention.sliding_window"))
|
|
m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
|
if len(m.VisionModel.Layers) == 0 {
|
|
return nil, model.ErrNoVisionModel
|
|
}
|
|
|
|
image, _, err := image.Decode(bytes.NewReader(multimodalData))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f32s, err := m.ImageProcessor.ProcessImage(image)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pixelValues := ctx.Input().FromFloats(f32s,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.imageSize,
|
|
m.ImageProcessor.numChannels,
|
|
)
|
|
|
|
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
|
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
|
|
return []input.Multimodal{{Tensor: visionOutputs}}, nil
|
|
}
|
|
|
|
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
|
var result []*input.Input
|
|
|
|
for _, inp := range inputs {
|
|
if len(inp.Multimodal) == 0 {
|
|
result = append(result, inp)
|
|
} else {
|
|
inputMultimodal := inp.Multimodal[0].Tensor
|
|
|
|
result = append(result,
|
|
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
|
&input.Input{Token: 255999}, // "<start_of_image>""
|
|
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
|
)
|
|
|
|
// add image token placeholders
|
|
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
|
|
|
|
result = append(result,
|
|
&input.Input{Token: 256000}, // <end_of_image>
|
|
&input.Input{Token: 108}, // "\n\n"
|
|
)
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
|
|
return m.Output.Forward(ctx, hiddenStates), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("gemma3", New)
|
|
model.Register("gemma3_embed", newEmbedModel)
|
|
}
|