Files
ollama37/llama/patches/0016-add-C-API-for-mtmd_input_text.patch
Shang Chieh Tseng ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00

47 lines
1.4 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Tue, 24 Jun 2025 16:55:31 -0600
Subject: [PATCH] add C API for mtmd_input_text
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---
tools/mtmd/mtmd.cpp | 10 ++++++++++
tools/mtmd/mtmd.h | 3 +++
2 files changed, 13 insertions(+)
diff --git a/tools/mtmd/mtmd.cpp b/tools/mtmd/mtmd.cpp
index 4d487581..35a0d25e 100644
--- a/tools/mtmd/mtmd.cpp
+++ b/tools/mtmd/mtmd.cpp
@@ -79,6 +79,16 @@ enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_IDEFICS3,
};
+mtmd_input_text* mtmd_input_text_init(const char * text, bool add_special, bool parse_special) {
+ return new mtmd_input_text{text, add_special, parse_special};
+}
+
+void mtmd_input_text_free(mtmd_input_text* input_text) {
+ if (input_text) {
+ delete input_text;
+ }
+}
+
const char * mtmd_default_marker() {
return "<__media__>";
}
diff --git a/tools/mtmd/mtmd.h b/tools/mtmd/mtmd.h
index f4ea07d3..cf287224 100644
--- a/tools/mtmd/mtmd.h
+++ b/tools/mtmd/mtmd.h
@@ -75,6 +75,9 @@ typedef struct mtmd_input_chunk mtmd_input_chunk;
typedef struct mtmd_input_chunks mtmd_input_chunks;
typedef struct mtmd_input_text mtmd_input_text;
+MTMD_API mtmd_input_text* mtmd_input_text_init(const char * text, bool add_special, bool parse_special);
+MTMD_API void mtmd_input_text_free(mtmd_input_text* input_text);
+
struct mtmd_context_params {
bool use_gpu;
bool print_timings;