mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-21 13:17:05 +00:00
- TC-INFERENCE-004: gemma3:12b single GPU test - TC-INFERENCE-005: gemma3:27b dual-GPU test (K80 layer split) - Each test unloads previous model before loading next - Workflows unload all 3 model sizes after inference suite - 27b test verifies both GPUs have memory allocated
121 lines
3.8 KiB
YAML
121 lines
3.8 KiB
YAML
id: TC-INFERENCE-004
|
|
name: Medium Model (12b) Inference
|
|
suite: inference
|
|
priority: 4
|
|
timeout: 600000
|
|
|
|
dependencies:
|
|
- TC-INFERENCE-003
|
|
|
|
steps:
|
|
- name: Unload previous model from VRAM
|
|
command: |
|
|
echo "Unloading any loaded models..."
|
|
curl -s http://localhost:11434/api/generate -d '{"model":"gemma3:4b","keep_alive":0}' || true
|
|
sleep 2
|
|
echo "Previous model unloaded"
|
|
|
|
- name: Check if gemma3:12b model exists
|
|
command: docker exec ollama37 ollama list | grep -q "gemma3:12b" && echo "Model exists" || echo "Model not found"
|
|
|
|
- name: Pull gemma3:12b model if needed
|
|
command: docker exec ollama37 ollama list | grep -q "gemma3:12b" || docker exec ollama37 ollama pull gemma3:12b
|
|
timeout: 900000
|
|
|
|
- name: Verify model available
|
|
command: docker exec ollama37 ollama list | grep gemma3:12b
|
|
|
|
- name: Warmup model (preload into GPU)
|
|
command: |
|
|
curl -s http://localhost:11434/api/generate \
|
|
-d '{"model":"gemma3:12b","prompt":"hi","stream":false}' \
|
|
| jq -r '.response' | head -c 100
|
|
timeout: 300000
|
|
|
|
- name: Verify model loaded to GPU
|
|
command: |
|
|
cd docker
|
|
LOGS=$(docker compose logs --since=5m 2>&1)
|
|
|
|
echo "=== Model Loading Check for gemma3:12b ==="
|
|
|
|
# Check for layer offloading to GPU
|
|
if echo "$LOGS" | grep -q "offloaded.*layers to GPU"; then
|
|
echo "SUCCESS: Model layers offloaded to GPU"
|
|
echo "$LOGS" | grep "offloaded.*layers to GPU" | tail -1
|
|
else
|
|
echo "ERROR: Model layers not offloaded to GPU"
|
|
exit 1
|
|
fi
|
|
|
|
# Check llama runner started
|
|
if echo "$LOGS" | grep -q "llama runner started"; then
|
|
echo "SUCCESS: Llama runner started"
|
|
else
|
|
echo "ERROR: Llama runner not started"
|
|
exit 1
|
|
fi
|
|
|
|
- name: Run inference test
|
|
command: docker exec ollama37 ollama run gemma3:12b "What is the capital of France? Answer in one word." 2>&1
|
|
timeout: 180000
|
|
|
|
- name: Check GPU memory usage
|
|
command: |
|
|
echo "=== GPU Memory Usage ==="
|
|
docker exec ollama37 nvidia-smi --query-gpu=index,memory.used,memory.total --format=csv
|
|
echo ""
|
|
echo "=== GPU Processes ==="
|
|
docker exec ollama37 nvidia-smi --query-compute-apps=pid,used_memory --format=csv 2>/dev/null || echo "No GPU processes listed"
|
|
|
|
- name: Check for inference errors
|
|
command: |
|
|
cd docker
|
|
LOGS=$(docker compose logs --since=5m 2>&1)
|
|
|
|
echo "=== Inference Error Check ==="
|
|
|
|
if echo "$LOGS" | grep -qE "CUBLAS_STATUS_"; then
|
|
echo "CRITICAL: CUBLAS error during inference:"
|
|
echo "$LOGS" | grep -E "CUBLAS_STATUS_"
|
|
exit 1
|
|
fi
|
|
|
|
if echo "$LOGS" | grep -qE "CUDA error"; then
|
|
echo "CRITICAL: CUDA error during inference:"
|
|
echo "$LOGS" | grep -E "CUDA error"
|
|
exit 1
|
|
fi
|
|
|
|
if echo "$LOGS" | grep -qi "out of memory"; then
|
|
echo "ERROR: Out of memory"
|
|
echo "$LOGS" | grep -i "out of memory"
|
|
exit 1
|
|
fi
|
|
|
|
echo "SUCCESS: No inference errors"
|
|
|
|
- name: Unload model after test
|
|
command: |
|
|
echo "Unloading gemma3:12b from VRAM..."
|
|
curl -s http://localhost:11434/api/generate -d '{"model":"gemma3:12b","keep_alive":0}' || true
|
|
sleep 2
|
|
echo "Model unloaded"
|
|
|
|
criteria: |
|
|
The gemma3:12b model should run inference on Tesla K80.
|
|
|
|
Expected:
|
|
- Model downloads successfully (~8GB)
|
|
- Model loads into GPU (single GPU should be sufficient)
|
|
- Logs show "offloaded X/Y layers to GPU"
|
|
- Logs show "llama runner started"
|
|
- Inference returns a response mentioning "Paris"
|
|
- NO CUBLAS_STATUS_ errors
|
|
- NO CUDA errors
|
|
- NO out of memory errors
|
|
- GPU memory shows allocation (~10GB)
|
|
|
|
This is a medium-sized model that should fit in a single K80 GPU.
|
|
Accept any reasonable answer about France's capital.
|