Files
ollama37/model/models/qwen25vl/model.go
Jesse Gross 1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00

151 lines
4.3 KiB
Go

package qwen25vl
import (
"bytes"
"fmt"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *Grid, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, nil, err
}
f32s, grid, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, nil, err
}
// Calculate tensor dimensions
patchDim := m.ImageProcessor.numChannels * m.ImageProcessor.temporalPatchSize *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
return pixelValues, grid, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
pixels, grid, err := m.PixelValues(ctx, multimodalData)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
var (
imageToken int32 = 151655
visionStartToken int32 = 151652
visionEndToken int32 = 151653
)
nImg := 0
for _, inp := range inputs {
if inp.Multimodal == nil {
// If not a multimodal input, add it to the result unchanged
result = append(result, inp)
} else {
// Adding the 'Picture' prefix is a hack, at the time of writing there is no way to prefix
// the image tokens with a prompt, so we add a prefix here
nImg++
pre, err := m.Encode(fmt.Sprintf(" Picture %d: ", nImg), true)
if err != nil {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
SameBatch: patchesPerChunk,
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
}
func init() {
model.Register("qwen25vl", New)
}