mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 19:56:59 +00:00
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
195 lines
4.9 KiB
Plaintext
195 lines
4.9 KiB
Plaintext
---
|
|
title: Structured Outputs
|
|
---
|
|
|
|
Structured outputs let you enforce a JSON schema on model responses so you can reliably extract structured data, describe images, or keep every reply consistent.
|
|
|
|
## Generating structured JSON
|
|
|
|
<Tabs>
|
|
<Tab title="cURL">
|
|
```shell
|
|
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
|
"model": "gpt-oss",
|
|
"messages": [{"role": "user", "content": "Tell me about Canada in one line"}],
|
|
"stream": false,
|
|
"format": "json"
|
|
}'
|
|
```
|
|
</Tab>
|
|
<Tab title="Python">
|
|
```python
|
|
from ollama import chat
|
|
|
|
response = chat(
|
|
model='gpt-oss',
|
|
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
|
|
format='json'
|
|
)
|
|
print(response.message.content)
|
|
```
|
|
</Tab>
|
|
<Tab title="JavaScript">
|
|
```javascript
|
|
import ollama from 'ollama'
|
|
|
|
const response = await ollama.chat({
|
|
model: 'gpt-oss',
|
|
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
|
|
format: 'json'
|
|
})
|
|
console.log(response.message.content)
|
|
```
|
|
</Tab>
|
|
</Tabs>
|
|
|
|
## Generating structured JSON with a schema
|
|
|
|
Provide a JSON schema to the `format` field.
|
|
|
|
<Note>
|
|
It is ideal to also pass the JSON schema as a string in the prompt to ground the model's response.
|
|
</Note>
|
|
|
|
<Tabs>
|
|
<Tab title="cURL">
|
|
```shell
|
|
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
|
"model": "gpt-oss",
|
|
"messages": [{"role": "user", "content": "Tell me about Canada."}],
|
|
"stream": false,
|
|
"format": {
|
|
"type": "object",
|
|
"properties": {
|
|
"name": {"type": "string"},
|
|
"capital": {"type": "string"},
|
|
"languages": {
|
|
"type": "array",
|
|
"items": {"type": "string"}
|
|
}
|
|
},
|
|
"required": ["name", "capital", "languages"]
|
|
}
|
|
}'
|
|
```
|
|
</Tab>
|
|
<Tab title="Python">
|
|
Use Pydantic models and pass `model_json_schema()` to `format`, then validate the response:
|
|
|
|
```python
|
|
from ollama import chat
|
|
from pydantic import BaseModel
|
|
|
|
class Country(BaseModel):
|
|
name: str
|
|
capital: str
|
|
languages: list[str]
|
|
|
|
response = chat(
|
|
model='gpt-oss',
|
|
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
|
|
format=Country.model_json_schema(),
|
|
)
|
|
|
|
country = Country.model_validate_json(response.message.content)
|
|
print(country)
|
|
```
|
|
</Tab>
|
|
<Tab title="JavaScript">
|
|
Serialize a Zod schema with `zodToJsonSchema()` and parse the structured response:
|
|
|
|
```javascript
|
|
import ollama from 'ollama'
|
|
import { z } from 'zod'
|
|
import { zodToJsonSchema } from 'zod-to-json-schema'
|
|
|
|
const Country = z.object({
|
|
name: z.string(),
|
|
capital: z.string(),
|
|
languages: z.array(z.string()),
|
|
})
|
|
|
|
const response = await ollama.chat({
|
|
model: 'gpt-oss',
|
|
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
|
|
format: zodToJsonSchema(Country),
|
|
})
|
|
|
|
const country = Country.parse(JSON.parse(response.message.content))
|
|
console.log(country)
|
|
```
|
|
</Tab>
|
|
</Tabs>
|
|
|
|
## Example: Extract structured data
|
|
|
|
Define the objects you want returned and let the model populate the fields:
|
|
|
|
```python
|
|
from ollama import chat
|
|
from pydantic import BaseModel
|
|
|
|
class Pet(BaseModel):
|
|
name: str
|
|
animal: str
|
|
age: int
|
|
color: str | None
|
|
favorite_toy: str | None
|
|
|
|
class PetList(BaseModel):
|
|
pets: list[Pet]
|
|
|
|
response = chat(
|
|
model='gpt-oss',
|
|
messages=[{'role': 'user', 'content': 'I have two cats named Luna and Loki...'}],
|
|
format=PetList.model_json_schema(),
|
|
)
|
|
|
|
pets = PetList.model_validate_json(response.message.content)
|
|
print(pets)
|
|
```
|
|
|
|
## Example: Vision with structured outputs
|
|
|
|
Vision models accept the same `format` parameter, enabling deterministic descriptions of images:
|
|
|
|
```python
|
|
from ollama import chat
|
|
from pydantic import BaseModel
|
|
from typing import Literal, Optional
|
|
|
|
class Object(BaseModel):
|
|
name: str
|
|
confidence: float
|
|
attributes: str
|
|
|
|
class ImageDescription(BaseModel):
|
|
summary: str
|
|
objects: list[Object]
|
|
scene: str
|
|
colors: list[str]
|
|
time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
|
|
setting: Literal['Indoor', 'Outdoor', 'Unknown']
|
|
text_content: Optional[str] = None
|
|
|
|
response = chat(
|
|
model='gemma3',
|
|
messages=[{
|
|
'role': 'user',
|
|
'content': 'Describe this photo and list the objects you detect.',
|
|
'images': ['path/to/image.jpg'],
|
|
}],
|
|
format=ImageDescription.model_json_schema(),
|
|
options={'temperature': 0},
|
|
)
|
|
|
|
image_description = ImageDescription.model_validate_json(response.message.content)
|
|
print(image_description)
|
|
```
|
|
|
|
## Tips for reliable structured outputs
|
|
|
|
- Define schemas with Pydantic (Python) or Zod (JavaScript) so they can be reused for validation.
|
|
- Lower the temperature (e.g., set it to `0`) for more deterministic completions.
|
|
- Structured outputs work through the OpenAI-compatible API via `response_format`
|