mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-14 01:37:04 +00:00
118 lines
3.5 KiB
Python
118 lines
3.5 KiB
Python
import os
|
|
import requests
|
|
import validators
|
|
from urllib.parse import urlsplit, urlunsplit
|
|
from tqdm import tqdm
|
|
|
|
|
|
models_endpoint_url = 'https://ollama.ai/api/models'
|
|
|
|
|
|
def models(models_home='.', *args, **kwargs):
|
|
for _, _, files in os.walk(models_home):
|
|
for file in files:
|
|
base, ext = os.path.splitext(file)
|
|
if ext == '.bin':
|
|
yield base
|
|
|
|
|
|
def pull(model, models_home='.', *args, **kwargs):
|
|
url = model
|
|
if not validators.url(url) and not url.startswith('huggingface.co'):
|
|
# this may just be a local model location
|
|
if model in models(models_home):
|
|
return model
|
|
# see if we have this model in our directory
|
|
response = requests.get(models_endpoint_url)
|
|
response.raise_for_status()
|
|
directory = response.json()
|
|
for model_info in directory:
|
|
if model_info.get('name') == model:
|
|
url = f"https://{model_info.get('url')}"
|
|
break
|
|
if not validators.url(url):
|
|
raise Exception(f'Unknown model {model}')
|
|
|
|
if not (url.startswith('http://') or url.startswith('https://')):
|
|
url = f'https://{url}'
|
|
|
|
parts = urlsplit(url)
|
|
path_parts = parts.path.split('/tree/')
|
|
|
|
if len(path_parts) == 1:
|
|
location = path_parts[0]
|
|
branch = 'main'
|
|
else:
|
|
location, branch = path_parts
|
|
|
|
location = location.strip('/')
|
|
|
|
# Reconstruct the URL
|
|
download_url = urlunsplit(
|
|
(
|
|
'https',
|
|
parts.netloc,
|
|
f'/api/models/{location}/tree/{branch}',
|
|
parts.query,
|
|
parts.fragment,
|
|
)
|
|
)
|
|
|
|
response = requests.get(download_url)
|
|
response.raise_for_status() # Raises stored HTTPError, if one occurred
|
|
|
|
json_response = response.json()
|
|
|
|
# get the last bin file we find, this is probably the most up to date
|
|
download_url = None
|
|
file_size = 0
|
|
for file_info in json_response:
|
|
if file_info.get('type') == 'file' and file_info.get('path').endswith('.bin'):
|
|
f_path = file_info.get('path')
|
|
download_url = (
|
|
f'https://huggingface.co/{location}/resolve/{branch}/{f_path}'
|
|
)
|
|
file_size = file_info.get('size')
|
|
|
|
if download_url is None:
|
|
raise Exception('No model found')
|
|
|
|
local_filename = os.path.join(models_home, os.path.basename(url)) + '.bin'
|
|
|
|
# Check if file already exists
|
|
first_byte = 0
|
|
if os.path.exists(local_filename):
|
|
# TODO: check if the file is the same SHA
|
|
first_byte = os.path.getsize(local_filename)
|
|
|
|
if first_byte >= file_size:
|
|
return local_filename
|
|
|
|
print(f'Pulling {model}...')
|
|
|
|
# If file size is non-zero, resume download
|
|
if first_byte != 0:
|
|
header = {'Range': f'bytes={first_byte}-'}
|
|
else:
|
|
header = {}
|
|
|
|
response = requests.get(download_url, headers=header, stream=True)
|
|
response.raise_for_status() # Raises stored HTTPError, if one occurred
|
|
|
|
total_size = int(response.headers.get('content-length', 0))
|
|
|
|
with open(local_filename, 'ab' if first_byte else 'wb') as file, tqdm(
|
|
total=total_size,
|
|
unit='iB',
|
|
unit_scale=True,
|
|
unit_divisor=1024,
|
|
initial=first_byte,
|
|
ascii=' ==',
|
|
bar_format='Downloading [{bar}] {percentage:3.2f}% {rate_fmt}{postfix}',
|
|
) as bar:
|
|
for data in response.iter_content(chunk_size=1024):
|
|
size = file.write(data)
|
|
bar.update(size)
|
|
|
|
return local_filename
|